Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, an...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-03-01
|
Series: | Frontiers in Computational Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fncom.2020.00017/full |
id |
doaj-5c3915bdf829480aa15d8fa0eb924aa6 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Théo Estienne Théo Estienne Théo Estienne Théo Estienne Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Maria Vakalopoulou Maria Vakalopoulou Maria Vakalopoulou Emilie Alvarez Andres Emilie Alvarez Andres Emilie Alvarez Andres Enzo Battistella Enzo Battistella Enzo Battistella Enzo Battistella Alexandre Carré Alexandre Carré Alexandre Carré Siddhartha Chandra Stergios Christodoulidis Mihir Sahasrabudhe Roger Sun Roger Sun Roger Sun Roger Sun Charlotte Robert Charlotte Robert Charlotte Robert Hugues Talbot Nikos Paragios Eric Deutsch Eric Deutsch Eric Deutsch |
spellingShingle |
Théo Estienne Théo Estienne Théo Estienne Théo Estienne Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Maria Vakalopoulou Maria Vakalopoulou Maria Vakalopoulou Emilie Alvarez Andres Emilie Alvarez Andres Emilie Alvarez Andres Enzo Battistella Enzo Battistella Enzo Battistella Enzo Battistella Alexandre Carré Alexandre Carré Alexandre Carré Siddhartha Chandra Stergios Christodoulidis Mihir Sahasrabudhe Roger Sun Roger Sun Roger Sun Roger Sun Charlotte Robert Charlotte Robert Charlotte Robert Hugues Talbot Nikos Paragios Eric Deutsch Eric Deutsch Eric Deutsch Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation Frontiers in Computational Neuroscience brain tumor segmentation deformable registration multi-task networks deep learning convolutional neural networks |
author_facet |
Théo Estienne Théo Estienne Théo Estienne Théo Estienne Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Marvin Lerousseau Maria Vakalopoulou Maria Vakalopoulou Maria Vakalopoulou Emilie Alvarez Andres Emilie Alvarez Andres Emilie Alvarez Andres Enzo Battistella Enzo Battistella Enzo Battistella Enzo Battistella Alexandre Carré Alexandre Carré Alexandre Carré Siddhartha Chandra Stergios Christodoulidis Mihir Sahasrabudhe Roger Sun Roger Sun Roger Sun Roger Sun Charlotte Robert Charlotte Robert Charlotte Robert Hugues Talbot Nikos Paragios Eric Deutsch Eric Deutsch Eric Deutsch |
author_sort |
Théo Estienne |
title |
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation |
title_short |
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation |
title_full |
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation |
title_fullStr |
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation |
title_full_unstemmed |
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation |
title_sort |
deep learning-based concurrent brain registration and tumor segmentation |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Computational Neuroscience |
issn |
1662-5188 |
publishDate |
2020-03-01 |
description |
Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, the similarity constraints are relaxed within the tumor regions using an efficient and relatively simple formulation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our proposed framework reports significant amelioration (p < 0.005) for the registration performance inside the tumor locations, providing a generic method that does not need any predefined conditions (e.g., absence of abnormalities) about the volumes to be registered. Our implementation is publicly available online at https://github.com/TheoEst/joint_registration_tumor_segmentation. |
topic |
brain tumor segmentation deformable registration multi-task networks deep learning convolutional neural networks |
url |
https://www.frontiersin.org/article/10.3389/fncom.2020.00017/full |
work_keys_str_mv |
AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT siddharthachandra deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT stergioschristodoulidis deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT mihirsahasrabudhe deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT huguestalbot deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT nikosparagios deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation |
_version_ |
1724617239639883776 |
spelling |
doaj-5c3915bdf829480aa15d8fa0eb924aa62020-11-25T03:20:41ZengFrontiers Media S.A.Frontiers in Computational Neuroscience1662-51882020-03-011410.3389/fncom.2020.00017482795Deep Learning-Based Concurrent Brain Registration and Tumor SegmentationThéo Estienne0Théo Estienne1Théo Estienne2Théo Estienne3Marvin Lerousseau4Marvin Lerousseau5Marvin Lerousseau6Marvin Lerousseau7Maria Vakalopoulou8Maria Vakalopoulou9Maria Vakalopoulou10Emilie Alvarez Andres11Emilie Alvarez Andres12Emilie Alvarez Andres13Enzo Battistella14Enzo Battistella15Enzo Battistella16Enzo Battistella17Alexandre Carré18Alexandre Carré19Alexandre Carré20Siddhartha Chandra21Stergios Christodoulidis22Mihir Sahasrabudhe23Roger Sun24Roger Sun25Roger Sun26Roger Sun27Charlotte Robert28Charlotte Robert29Charlotte Robert30Hugues Talbot31Nikos Paragios32Eric Deutsch33Eric Deutsch34Eric Deutsch35Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Predictive Biomarkers and Novel Therapeutic Strategies in Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceImage registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, the similarity constraints are relaxed within the tumor regions using an efficient and relatively simple formulation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our proposed framework reports significant amelioration (p < 0.005) for the registration performance inside the tumor locations, providing a generic method that does not need any predefined conditions (e.g., absence of abnormalities) about the volumes to be registered. Our implementation is publicly available online at https://github.com/TheoEst/joint_registration_tumor_segmentation.https://www.frontiersin.org/article/10.3389/fncom.2020.00017/fullbrain tumor segmentationdeformable registrationmulti-task networksdeep learningconvolutional neural networks |