Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation

Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, an...

Full description

Bibliographic Details
Main Authors: Théo Estienne, Marvin Lerousseau, Maria Vakalopoulou, Emilie Alvarez Andres, Enzo Battistella, Alexandre Carré, Siddhartha Chandra, Stergios Christodoulidis, Mihir Sahasrabudhe, Roger Sun, Charlotte Robert, Hugues Talbot, Nikos Paragios, Eric Deutsch
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-03-01
Series:Frontiers in Computational Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fncom.2020.00017/full
id doaj-5c3915bdf829480aa15d8fa0eb924aa6
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Théo Estienne
Théo Estienne
Théo Estienne
Théo Estienne
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Maria Vakalopoulou
Maria Vakalopoulou
Maria Vakalopoulou
Emilie Alvarez Andres
Emilie Alvarez Andres
Emilie Alvarez Andres
Enzo Battistella
Enzo Battistella
Enzo Battistella
Enzo Battistella
Alexandre Carré
Alexandre Carré
Alexandre Carré
Siddhartha Chandra
Stergios Christodoulidis
Mihir Sahasrabudhe
Roger Sun
Roger Sun
Roger Sun
Roger Sun
Charlotte Robert
Charlotte Robert
Charlotte Robert
Hugues Talbot
Nikos Paragios
Eric Deutsch
Eric Deutsch
Eric Deutsch
spellingShingle Théo Estienne
Théo Estienne
Théo Estienne
Théo Estienne
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Maria Vakalopoulou
Maria Vakalopoulou
Maria Vakalopoulou
Emilie Alvarez Andres
Emilie Alvarez Andres
Emilie Alvarez Andres
Enzo Battistella
Enzo Battistella
Enzo Battistella
Enzo Battistella
Alexandre Carré
Alexandre Carré
Alexandre Carré
Siddhartha Chandra
Stergios Christodoulidis
Mihir Sahasrabudhe
Roger Sun
Roger Sun
Roger Sun
Roger Sun
Charlotte Robert
Charlotte Robert
Charlotte Robert
Hugues Talbot
Nikos Paragios
Eric Deutsch
Eric Deutsch
Eric Deutsch
Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
Frontiers in Computational Neuroscience
brain tumor segmentation
deformable registration
multi-task networks
deep learning
convolutional neural networks
author_facet Théo Estienne
Théo Estienne
Théo Estienne
Théo Estienne
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Marvin Lerousseau
Maria Vakalopoulou
Maria Vakalopoulou
Maria Vakalopoulou
Emilie Alvarez Andres
Emilie Alvarez Andres
Emilie Alvarez Andres
Enzo Battistella
Enzo Battistella
Enzo Battistella
Enzo Battistella
Alexandre Carré
Alexandre Carré
Alexandre Carré
Siddhartha Chandra
Stergios Christodoulidis
Mihir Sahasrabudhe
Roger Sun
Roger Sun
Roger Sun
Roger Sun
Charlotte Robert
Charlotte Robert
Charlotte Robert
Hugues Talbot
Nikos Paragios
Eric Deutsch
Eric Deutsch
Eric Deutsch
author_sort Théo Estienne
title Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
title_short Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
title_full Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
title_fullStr Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
title_full_unstemmed Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation
title_sort deep learning-based concurrent brain registration and tumor segmentation
publisher Frontiers Media S.A.
series Frontiers in Computational Neuroscience
issn 1662-5188
publishDate 2020-03-01
description Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, the similarity constraints are relaxed within the tumor regions using an efficient and relatively simple formulation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our proposed framework reports significant amelioration (p < 0.005) for the registration performance inside the tumor locations, providing a generic method that does not need any predefined conditions (e.g., absence of abnormalities) about the volumes to be registered. Our implementation is publicly available online at https://github.com/TheoEst/joint_registration_tumor_segmentation.
topic brain tumor segmentation
deformable registration
multi-task networks
deep learning
convolutional neural networks
url https://www.frontiersin.org/article/10.3389/fncom.2020.00017/full
work_keys_str_mv AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT theoestienne deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT marvinlerousseau deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT mariavakalopoulou deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT emiliealvarezandres deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT enzobattistella deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT alexandrecarre deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT siddharthachandra deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT stergioschristodoulidis deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT mihirsahasrabudhe deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT rogersun deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT charlotterobert deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT huguestalbot deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT nikosparagios deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
AT ericdeutsch deeplearningbasedconcurrentbrainregistrationandtumorsegmentation
_version_ 1724617239639883776
spelling doaj-5c3915bdf829480aa15d8fa0eb924aa62020-11-25T03:20:41ZengFrontiers Media S.A.Frontiers in Computational Neuroscience1662-51882020-03-011410.3389/fncom.2020.00017482795Deep Learning-Based Concurrent Brain Registration and Tumor SegmentationThéo Estienne0Théo Estienne1Théo Estienne2Théo Estienne3Marvin Lerousseau4Marvin Lerousseau5Marvin Lerousseau6Marvin Lerousseau7Maria Vakalopoulou8Maria Vakalopoulou9Maria Vakalopoulou10Emilie Alvarez Andres11Emilie Alvarez Andres12Emilie Alvarez Andres13Enzo Battistella14Enzo Battistella15Enzo Battistella16Enzo Battistella17Alexandre Carré18Alexandre Carré19Alexandre Carré20Siddhartha Chandra21Stergios Christodoulidis22Mihir Sahasrabudhe23Roger Sun24Roger Sun25Roger Sun26Roger Sun27Charlotte Robert28Charlotte Robert29Charlotte Robert30Hugues Talbot31Nikos Paragios32Eric Deutsch33Eric Deutsch34Eric Deutsch35Gustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Mathématiques et Informatique pour la Complexité et les Systèmes, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Predictive Biomarkers and Novel Therapeutic Strategies in Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceUniversité Paris-Saclay, CentraleSupélec, Inria, Centre de Vision Numérique, Gif-sur-Yvette, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceGustave Roussy-CentraleSupélec-TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, FranceUniversité Paris-Saclay, Institut Gustave Roussy, Inserm, Molecular Radiotherapy and Innovative Therapeutics, Villejuif, FranceGustave Roussy Cancer Campus, Department of Radiation Oncology, Villejuif, FranceImage registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities. In this paper, we propose a novel, efficient, and multi-task algorithm that addresses the problems of image registration and brain tumor segmentation jointly. Our method exploits the dependencies between these tasks through a natural coupling of their interdependencies during inference. In particular, the similarity constraints are relaxed within the tumor regions using an efficient and relatively simple formulation. We evaluated the performance of our formulation both quantitatively and qualitatively for registration and segmentation problems on two publicly available datasets (BraTS 2018 and OASIS 3), reporting competitive results with other recent state-of-the-art methods. Moreover, our proposed framework reports significant amelioration (p < 0.005) for the registration performance inside the tumor locations, providing a generic method that does not need any predefined conditions (e.g., absence of abnormalities) about the volumes to be registered. Our implementation is publicly available online at https://github.com/TheoEst/joint_registration_tumor_segmentation.https://www.frontiersin.org/article/10.3389/fncom.2020.00017/fullbrain tumor segmentationdeformable registrationmulti-task networksdeep learningconvolutional neural networks