Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996–2012)

Tropical tropospheric ozone columns are retrieved with the convective cloud differential (CCD) technique using total ozone columns and cloud parameters from different European satellite instruments. Monthly-mean tropospheric column amounts [DU] are calculated by subtracting the above-cloud ozone col...

Full description

Bibliographic Details
Main Authors: E. Leventidou, K.-U. Eichmann, M. Weber, J. P. Burrows
Format: Article
Language:English
Published: Copernicus Publications 2016-07-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/9/3407/2016/amt-9-3407-2016.pdf
Description
Summary:Tropical tropospheric ozone columns are retrieved with the convective cloud differential (CCD) technique using total ozone columns and cloud parameters from different European satellite instruments. Monthly-mean tropospheric column amounts [DU] are calculated by subtracting the above-cloud ozone column from the total column. A CCD algorithm (CCD_IUP) has been developed as part of the verification algorithm developed for TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel 5-precursor (S5p) mission, which was applied to GOME/ERS-2 (1995–2003), SCIAMACHY/Envisat (2002–2012), and GOME-2/MetOp-A (2007–2012) measurements. Thus a unique long-term record of monthly-mean tropical tropospheric ozone columns (20° S–20° N) from 1996 to 2012 is now available. An uncertainty estimation has been performed, resulting in a tropospheric ozone column uncertainty less than 2 DU ( < 10 %) for all instruments. The dataset has not been yet harmonised into one consistent; however, comparison between the three separate datasets (GOME/SCIAMACHY/GOME-2) shows that GOME-2 overestimates the tropical tropospheric ozone columns by about 8 DU, while SCIAMACHY and GOME are in good agreement. Validation with Southern Hemisphere ADditional OZonesondes (SHADOZ) data shows that tropospheric ozone columns from the CCD_IUP technique and collocated integrated ozonesonde profiles from the surface up to 200 hPa are in good agreement with respect to range, interannual variations, and variances. Biases within ±5 DU and root-mean-square (RMS) deviation of less than 10 DU are found for all instruments. CCD comparisons using SCIAMACHY data with tropospheric ozone columns derived from limb/nadir matching have shown that the bias and RMS deviation are within the range of the CCD_IUP comparison with the ozonesondes. The 17-year dataset can be helpful for evaluating chemistry models and performing climate change studies.
ISSN:1867-1381
1867-8548