A class of singular n-dimensional impulsive Neumann systems

Abstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\math...

Full description

Bibliographic Details
Main Authors: Ping Li, Meiqiang Feng, Minmin Wang
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1558-2
id doaj-5ca2cc8b9f0a42789e7cdc572c419ad5
record_format Article
spelling doaj-5ca2cc8b9f0a42789e7cdc572c419ad52020-11-24T22:01:43ZengSpringerOpenAdvances in Difference Equations1687-18472018-03-012018111510.1186/s13662-018-1558-2A class of singular n-dimensional impulsive Neumann systemsPing Li0Meiqiang Feng1Minmin Wang2School of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversityAbstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\mathbf{x}(t)=\lambda {\mathbf{g}}(t)\mathbf{f} \bigl(t,\mathbf{x}(t) \bigr),\quad t\in J, t\neq t_{k}, \\& -\Delta {\mathbf{x}}^{\prime}|_{t=t_{k}}=\mu {\mathbf{I}}_{k} \bigl(t_{k},\mathbf{x}(t_{k}) \bigr),\quad k=1,2,\ldots ,m, \\& \mathbf{x}^{\prime}(0)=\mathbf{x}^{\prime}(1)=0. \end{aligned}$$ The vector-valued function x is defined by x=[x1,x2,…,xn]⊤,g(t)=diag[g1(t),…,gi(t),…,gn(t)], $$\begin{aligned}& \mathbf{x}=[x_{1},x_{2},\dots ,x_{n}]^{\top }, \qquad \mathbf{g}(t)=\operatorname{diag} \bigl[g_{1}(t), \ldots ,g_{i}(t), \ldots , g_{n}(t) \bigr], \end{aligned}$$ where gi∈Lp[0,1] $g_{i}\in L^{p}[0,1]$ for some p≥1 $p\geq 1$, i=1,2,…,n $i=1,2,\ldots , n$, and it has infinitely many singularities in [0,12) $[0,\frac{1}{2})$. Our methods employ the fixed point index theory and the inequality technique.http://link.springer.com/article/10.1186/s13662-018-1558-2Multi-parametern-dimensional impulsive Neumann systemInfinitely many singularitiesMatrix theoryFixed point index theory and inequality technique
collection DOAJ
language English
format Article
sources DOAJ
author Ping Li
Meiqiang Feng
Minmin Wang
spellingShingle Ping Li
Meiqiang Feng
Minmin Wang
A class of singular n-dimensional impulsive Neumann systems
Advances in Difference Equations
Multi-parameter
n-dimensional impulsive Neumann system
Infinitely many singularities
Matrix theory
Fixed point index theory and inequality technique
author_facet Ping Li
Meiqiang Feng
Minmin Wang
author_sort Ping Li
title A class of singular n-dimensional impulsive Neumann systems
title_short A class of singular n-dimensional impulsive Neumann systems
title_full A class of singular n-dimensional impulsive Neumann systems
title_fullStr A class of singular n-dimensional impulsive Neumann systems
title_full_unstemmed A class of singular n-dimensional impulsive Neumann systems
title_sort class of singular n-dimensional impulsive neumann systems
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2018-03-01
description Abstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\mathbf{x}(t)=\lambda {\mathbf{g}}(t)\mathbf{f} \bigl(t,\mathbf{x}(t) \bigr),\quad t\in J, t\neq t_{k}, \\& -\Delta {\mathbf{x}}^{\prime}|_{t=t_{k}}=\mu {\mathbf{I}}_{k} \bigl(t_{k},\mathbf{x}(t_{k}) \bigr),\quad k=1,2,\ldots ,m, \\& \mathbf{x}^{\prime}(0)=\mathbf{x}^{\prime}(1)=0. \end{aligned}$$ The vector-valued function x is defined by x=[x1,x2,…,xn]⊤,g(t)=diag[g1(t),…,gi(t),…,gn(t)], $$\begin{aligned}& \mathbf{x}=[x_{1},x_{2},\dots ,x_{n}]^{\top }, \qquad \mathbf{g}(t)=\operatorname{diag} \bigl[g_{1}(t), \ldots ,g_{i}(t), \ldots , g_{n}(t) \bigr], \end{aligned}$$ where gi∈Lp[0,1] $g_{i}\in L^{p}[0,1]$ for some p≥1 $p\geq 1$, i=1,2,…,n $i=1,2,\ldots , n$, and it has infinitely many singularities in [0,12) $[0,\frac{1}{2})$. Our methods employ the fixed point index theory and the inequality technique.
topic Multi-parameter
n-dimensional impulsive Neumann system
Infinitely many singularities
Matrix theory
Fixed point index theory and inequality technique
url http://link.springer.com/article/10.1186/s13662-018-1558-2
work_keys_str_mv AT pingli aclassofsingularndimensionalimpulsiveneumannsystems
AT meiqiangfeng aclassofsingularndimensionalimpulsiveneumannsystems
AT minminwang aclassofsingularndimensionalimpulsiveneumannsystems
AT pingli classofsingularndimensionalimpulsiveneumannsystems
AT meiqiangfeng classofsingularndimensionalimpulsiveneumannsystems
AT minminwang classofsingularndimensionalimpulsiveneumannsystems
_version_ 1725838898427330560