A class of singular n-dimensional impulsive Neumann systems
Abstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\math...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-03-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-018-1558-2 |
id |
doaj-5ca2cc8b9f0a42789e7cdc572c419ad5 |
---|---|
record_format |
Article |
spelling |
doaj-5ca2cc8b9f0a42789e7cdc572c419ad52020-11-24T22:01:43ZengSpringerOpenAdvances in Difference Equations1687-18472018-03-012018111510.1186/s13662-018-1558-2A class of singular n-dimensional impulsive Neumann systemsPing Li0Meiqiang Feng1Minmin Wang2School of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversitySchool of Applied Science, Beijing Information Science & Technology UniversityAbstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\mathbf{x}(t)=\lambda {\mathbf{g}}(t)\mathbf{f} \bigl(t,\mathbf{x}(t) \bigr),\quad t\in J, t\neq t_{k}, \\& -\Delta {\mathbf{x}}^{\prime}|_{t=t_{k}}=\mu {\mathbf{I}}_{k} \bigl(t_{k},\mathbf{x}(t_{k}) \bigr),\quad k=1,2,\ldots ,m, \\& \mathbf{x}^{\prime}(0)=\mathbf{x}^{\prime}(1)=0. \end{aligned}$$ The vector-valued function x is defined by x=[x1,x2,…,xn]⊤,g(t)=diag[g1(t),…,gi(t),…,gn(t)], $$\begin{aligned}& \mathbf{x}=[x_{1},x_{2},\dots ,x_{n}]^{\top }, \qquad \mathbf{g}(t)=\operatorname{diag} \bigl[g_{1}(t), \ldots ,g_{i}(t), \ldots , g_{n}(t) \bigr], \end{aligned}$$ where gi∈Lp[0,1] $g_{i}\in L^{p}[0,1]$ for some p≥1 $p\geq 1$, i=1,2,…,n $i=1,2,\ldots , n$, and it has infinitely many singularities in [0,12) $[0,\frac{1}{2})$. Our methods employ the fixed point index theory and the inequality technique.http://link.springer.com/article/10.1186/s13662-018-1558-2Multi-parametern-dimensional impulsive Neumann systemInfinitely many singularitiesMatrix theoryFixed point index theory and inequality technique |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ping Li Meiqiang Feng Minmin Wang |
spellingShingle |
Ping Li Meiqiang Feng Minmin Wang A class of singular n-dimensional impulsive Neumann systems Advances in Difference Equations Multi-parameter n-dimensional impulsive Neumann system Infinitely many singularities Matrix theory Fixed point index theory and inequality technique |
author_facet |
Ping Li Meiqiang Feng Minmin Wang |
author_sort |
Ping Li |
title |
A class of singular n-dimensional impulsive Neumann systems |
title_short |
A class of singular n-dimensional impulsive Neumann systems |
title_full |
A class of singular n-dimensional impulsive Neumann systems |
title_fullStr |
A class of singular n-dimensional impulsive Neumann systems |
title_full_unstemmed |
A class of singular n-dimensional impulsive Neumann systems |
title_sort |
class of singular n-dimensional impulsive neumann systems |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2018-03-01 |
description |
Abstract This paper investigates the existence of infinitely many positive solutions for the second-order n-dimensional impulsive singular Neumann system −x″(t)+Mx(t)=λg(t)f(t,x(t)),t∈J,t≠tk,−Δx′|t=tk=μIk(tk,x(tk)),k=1,2,…,m,x′(0)=x′(1)=0. $$\begin{aligned}& -\mathbf{x}^{\prime\prime}(t)+ M\mathbf{x}(t)=\lambda {\mathbf{g}}(t)\mathbf{f} \bigl(t,\mathbf{x}(t) \bigr),\quad t\in J, t\neq t_{k}, \\& -\Delta {\mathbf{x}}^{\prime}|_{t=t_{k}}=\mu {\mathbf{I}}_{k} \bigl(t_{k},\mathbf{x}(t_{k}) \bigr),\quad k=1,2,\ldots ,m, \\& \mathbf{x}^{\prime}(0)=\mathbf{x}^{\prime}(1)=0. \end{aligned}$$ The vector-valued function x is defined by x=[x1,x2,…,xn]⊤,g(t)=diag[g1(t),…,gi(t),…,gn(t)], $$\begin{aligned}& \mathbf{x}=[x_{1},x_{2},\dots ,x_{n}]^{\top }, \qquad \mathbf{g}(t)=\operatorname{diag} \bigl[g_{1}(t), \ldots ,g_{i}(t), \ldots , g_{n}(t) \bigr], \end{aligned}$$ where gi∈Lp[0,1] $g_{i}\in L^{p}[0,1]$ for some p≥1 $p\geq 1$, i=1,2,…,n $i=1,2,\ldots , n$, and it has infinitely many singularities in [0,12) $[0,\frac{1}{2})$. Our methods employ the fixed point index theory and the inequality technique. |
topic |
Multi-parameter n-dimensional impulsive Neumann system Infinitely many singularities Matrix theory Fixed point index theory and inequality technique |
url |
http://link.springer.com/article/10.1186/s13662-018-1558-2 |
work_keys_str_mv |
AT pingli aclassofsingularndimensionalimpulsiveneumannsystems AT meiqiangfeng aclassofsingularndimensionalimpulsiveneumannsystems AT minminwang aclassofsingularndimensionalimpulsiveneumannsystems AT pingli classofsingularndimensionalimpulsiveneumannsystems AT meiqiangfeng classofsingularndimensionalimpulsiveneumannsystems AT minminwang classofsingularndimensionalimpulsiveneumannsystems |
_version_ |
1725838898427330560 |