A State-Dependent Constitutive Model for Gas Hydrate-Bearing Sediments Considering Cementing Effect

This paper presents a state-dependent constitutive model for gas hydrate-bearing sediments (GHBS), considering the cementing effect for simulating the stress–strain behavior of GHBS. In this work, to consider the influence of hydrate on matrix samples in theory, some representative GHBS laboratory t...

Full description

Bibliographic Details
Main Authors: Qingmeng Yuan, Liang Kong, Rui Xu, Yapeng Zhao
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/8/8/621
Description
Summary:This paper presents a state-dependent constitutive model for gas hydrate-bearing sediments (GHBS), considering the cementing effect for simulating the stress–strain behavior of GHBS. In this work, to consider the influence of hydrate on matrix samples in theory, some representative GHBS laboratory tests were analyzed, and it was found that GHBS has obvious state-related characteristics. At the same time, it was found that GHBS has high bonding strength. In order to describe these characteristics of GHBS, the cementation strength related to hydrate saturation is introduced in the framework of a sand state correlation model. In addition, in order to accurately reflect the influence of cementation on the hardening law of GHBS, the degradation rate of cementation strength is introduced, and the mixed hardening theory is adopted to establish the constitutive model. The model presented in this paper reproduces the experimental results of Masui et al. and Miyazaki et al., and the prediction performance of the model is satisfactory, which proves the rationality of this work.
ISSN:2077-1312