Control of Sunroof Buffeting Noise by Optimizing the Flow Field Characteristics of a Commercial Vehicle

When a commercial vehicle is driving with the sunroof open, it is easy for the problem of sunroof buffeting noise to occur. This paper establishes the basis for the design of a commercial vehicle model that solves the problem of sunroof buffeting noise, which is based on computational fluid dynamics...

Full description

Bibliographic Details
Main Authors: Rongjiang Tang, Hongbin He, Zengjun Lu, Shenfang Li, Enyong Xu, Fei Xiao, Avelino Núñez-Delgado
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/6/1052
Description
Summary:When a commercial vehicle is driving with the sunroof open, it is easy for the problem of sunroof buffeting noise to occur. This paper establishes the basis for the design of a commercial vehicle model that solves the problem of sunroof buffeting noise, which is based on computational fluid dynamics (CFD) numerical simulation technology. The large eddy simulation (LES) method was used to analyze the characteristics of the buffeting noise with different speed conditions while the sunroof was open. The simulation results showed that the small vortex generated in the cab forehead merges into a large vortex during the backward movement, and the turbulent vortex causes a resonance response in the cab cavity as the turbulent vortex moves above the sunroof and falls into the cab. Improving the flow field characteristics above the cab can reduce the sunroof buffeting noise. Focusing on the buffeting noise of commercial vehicles, it is proposed that the existing accessories, including sun visors and roof domes, are optimized to deal with the problem of sunroof buffeting noise. The sound pressure level of the sunroof buffeting noise was reduced by 6.7 dB after optimization. At the same time, the local pressure drag of the commercial vehicle was reduced, and the wind resistance coefficient was reduced by 1.55% compared to the original commercial vehicle. These results can be considered as relevant, with high potential applicability, within this field of research.
ISSN:2227-9717