Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals

We prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with val...

Full description

Bibliographic Details
Main Author: Aneta Sikorska-Nowak
Format: Article
Language:English
Published: Hindawi Limited 2010-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2010/836347
id doaj-5cf9b721d4e0402396cc245f62a69803
record_format Article
spelling doaj-5cf9b721d4e0402396cc245f62a698032020-11-24T21:25:48ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092010-01-01201010.1155/2010/836347836347Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta IntegralsAneta Sikorska-Nowak0Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, PolandWe prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with values in a Banach space 𝐸, and the integral is taken in the sense of Henstock-Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral and the Pettis integral. Additionally, the functions 𝑓 and 𝑘 satisfy some boundary conditions and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove Ambrosetti's lemma.http://dx.doi.org/10.1155/2010/836347
collection DOAJ
language English
format Article
sources DOAJ
author Aneta Sikorska-Nowak
spellingShingle Aneta Sikorska-Nowak
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
Abstract and Applied Analysis
author_facet Aneta Sikorska-Nowak
author_sort Aneta Sikorska-Nowak
title Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
title_short Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
title_full Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
title_fullStr Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
title_full_unstemmed Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
title_sort integrodifferential equations on time scales with henstock-kurzweil-pettis delta integrals
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2010-01-01
description We prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with values in a Banach space 𝐸, and the integral is taken in the sense of Henstock-Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral and the Pettis integral. Additionally, the functions 𝑓 and 𝑘 satisfy some boundary conditions and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove Ambrosetti's lemma.
url http://dx.doi.org/10.1155/2010/836347
work_keys_str_mv AT anetasikorskanowak integrodifferentialequationsontimescaleswithhenstockkurzweilpettisdeltaintegrals
_version_ 1725982680493850624