Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals
We prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with val...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2010-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2010/836347 |
id |
doaj-5cf9b721d4e0402396cc245f62a69803 |
---|---|
record_format |
Article |
spelling |
doaj-5cf9b721d4e0402396cc245f62a698032020-11-24T21:25:48ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092010-01-01201010.1155/2010/836347836347Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta IntegralsAneta Sikorska-Nowak0Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, PolandWe prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with values in a Banach space 𝐸, and the integral is taken in the sense of Henstock-Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral and the Pettis integral. Additionally, the functions 𝑓 and 𝑘 satisfy some boundary conditions and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove Ambrosetti's lemma.http://dx.doi.org/10.1155/2010/836347 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aneta Sikorska-Nowak |
spellingShingle |
Aneta Sikorska-Nowak Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals Abstract and Applied Analysis |
author_facet |
Aneta Sikorska-Nowak |
author_sort |
Aneta Sikorska-Nowak |
title |
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals |
title_short |
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals |
title_full |
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals |
title_fullStr |
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals |
title_full_unstemmed |
Integrodifferential Equations on Time Scales with Henstock-Kurzweil-Pettis Delta Integrals |
title_sort |
integrodifferential equations on time scales with henstock-kurzweil-pettis delta integrals |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2010-01-01 |
description |
We prove existence theorems for integro-differential equations 𝑥Δ∫(𝑡)=𝑓(𝑡,𝑥(𝑡),𝑡0𝑘(𝑡,𝑠,𝑥(𝑠))Δ𝑠), 𝑥(0)=𝑥0, 𝑡∈𝐼𝑎=[0,𝑎]∩𝑇, 𝑎∈𝑅+, where 𝑇 denotes a time scale (nonempty closed subset of real numbers 𝑅), and 𝐼𝑎 is a time scale interval. The functions 𝑓,𝑘 are weakly-weakly sequentially continuous with values in a Banach space 𝐸, and the integral is taken in the sense of Henstock-Kurzweil-Pettis delta integral. This integral generalizes the Henstock-Kurzweil delta integral and the Pettis integral. Additionally, the functions 𝑓 and 𝑘 satisfy some boundary conditions and conditions expressed in terms of measures of weak noncompactness. Moreover, we prove Ambrosetti's lemma. |
url |
http://dx.doi.org/10.1155/2010/836347 |
work_keys_str_mv |
AT anetasikorskanowak integrodifferentialequationsontimescaleswithhenstockkurzweilpettisdeltaintegrals |
_version_ |
1725982680493850624 |