On the Use of Nonlinear Model Predictive Control without Parameter Adaptation for Batch Processes

Optimization techniques are typically used to improve economic performance of batch processes, while meeting product and environmental specifications and safety constraints. Offline methods suffer from the parameters of the model being inaccurate, while re-identification of the parameters may not be...

Full description

Bibliographic Details
Main Authors: Jean-Christophe Binette, Bala Srinivasan
Format: Article
Language:English
Published: MDPI AG 2016-08-01
Series:Processes
Subjects:
Online Access:http://www.mdpi.com/2227-9717/4/3/27
Description
Summary:Optimization techniques are typically used to improve economic performance of batch processes, while meeting product and environmental specifications and safety constraints. Offline methods suffer from the parameters of the model being inaccurate, while re-identification of the parameters may not be possible due to the absence of persistency of excitation. Thus, a practical solution is the Nonlinear Model Predictive Control (NMPC) without parameter adaptation, where the measured states serve as new initial conditions for the re-optimization problem with a diminishing horizon. In such schemes, it is clear that the optimum cannot be reached due to plant-model mismatch. However, this paper goes one step further in showing that such re-optimization could in certain cases, especially with an economic cost, lead to results worse than the offline optimal input. On the other hand, in absence of process noise, for small parametric variations, if the cost function corresponds to tracking a feasible trajectory, re-optimization always improves performance. This shows inherent robustness associated with the tracking cost. A batch reactor example presents and analyzes the different cases. Re-optimizing led to worse results in some cases with an economical cost function, while no such problem occurred while working with a tracking cost.
ISSN:2227-9717