<it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>

<p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy...

Full description

Bibliographic Details
Main Authors: Khalaf Abeer A, Gmitter Frederick G, Conesa Ana, Dopazo Joaquin, Moore Gloria A
Format: Article
Language:English
Published: BMC 2011-11-01
Series:BMC Plant Biology
Online Access:http://www.biomedcentral.com/1471-2229/11/159
id doaj-5d19b20cebdb46c1977ea350bc4e2d2f
record_format Article
spelling doaj-5d19b20cebdb46c1977ea350bc4e2d2f2020-11-24T22:57:38ZengBMCBMC Plant Biology1471-22292011-11-0111115910.1186/1471-2229-11-159<it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>Khalaf Abeer AGmitter Frederick GConesa AnaDopazo JoaquinMoore Gloria A<p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p> http://www.biomedcentral.com/1471-2229/11/159
collection DOAJ
language English
format Article
sources DOAJ
author Khalaf Abeer A
Gmitter Frederick G
Conesa Ana
Dopazo Joaquin
Moore Gloria A
spellingShingle Khalaf Abeer A
Gmitter Frederick G
Conesa Ana
Dopazo Joaquin
Moore Gloria A
<it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
BMC Plant Biology
author_facet Khalaf Abeer A
Gmitter Frederick G
Conesa Ana
Dopazo Joaquin
Moore Gloria A
author_sort Khalaf Abeer A
title <it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
title_short <it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
title_full <it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
title_fullStr <it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
title_full_unstemmed <it>Fortunella margarita </it>Transcriptional Reprogramming Triggered by <it>Xanthomonas citri </it>subsp. <it>citri</it>
title_sort <it>fortunella margarita </it>transcriptional reprogramming triggered by <it>xanthomonas citri </it>subsp. <it>citri</it>
publisher BMC
series BMC Plant Biology
issn 1471-2229
publishDate 2011-11-01
description <p>Abstract</p> <p>Background</p> <p>Citrus canker disease caused by the bacterial pathogen <it>Xanthomonas citri </it>subsp. <it>citri (</it>Xcc) <it>has </it>become endemic in areas where high temperature, rain, humidity, and windy conditions provide a favourable environment for the dissemination of the bacterium. Xcc is pathogenic on many commercial citrus varieties but appears to elicit an incompatible reaction on the citrus relative <it>Fortunella margarita </it>Swing (kumquat), in the form of a very distinct delayed necrotic response. We have developed subtractive libraries enriched in sequences expressed in kumquat leaves during both early and late stages of the disease. The isolated differentially expressed transcripts were subsequently sequenced. Our results demonstrate how the use of microarray expression profiling can help assign roles to previously uncharacterized genes and elucidate plant pathogenesis-response related mechanisms. This can be considered to be a case study in a citrus relative where high throughput technologies were utilized to understand defence mechanisms in <it>Fortunella </it>and citrus at the molecular level.</p> <p>Results</p> <p><b>cDNAs from sequenced kumquat libraries (ESTs) made from subtracted RNA populations, healthy vs. infected, were used to make this microarray</b>. Of 2054 selected genes on a customized array, 317 were differentially expressed (P < 0.05) in Xcc challenged kumquat plants compared to mock-inoculated ones. This study identified components of the incompatible interaction such as reactive oxygen species (ROS) and programmed cell death (PCD). Common defence mechanisms and a number of resistance genes were also identified. In addition, there were a considerable number of differentially regulated genes that had no homologues in the databases. This could be an indication of either a specialized set of genes employed by kumquat in response to canker disease or new defence mechanisms in citrus.</p> <p>Conclusion</p> <p>Functional categorization of kumquat Xcc-responsive genes revealed an enhanced defence-related metabolism as well as a number of resistant response-specific genes in the kumquat transcriptome in response to Xcc inoculation. Gene expression profile(s) were analyzed to assemble a comprehensive and inclusive image of the molecular interaction in the kumquat/Xcc system. This was done in order to elucidate molecular mechanisms associated with the development of the hypersensitive response phenotype in kumquat leaves. These data will be used to perform comparisons among citrus species to evaluate means to enhance the host immune responses against bacterial diseases.</p>
url http://www.biomedcentral.com/1471-2229/11/159
work_keys_str_mv AT khalafabeera itfortunellamargaritaittranscriptionalreprogrammingtriggeredbyitxanthomonascitriitsubspitcitriit
AT gmitterfrederickg itfortunellamargaritaittranscriptionalreprogrammingtriggeredbyitxanthomonascitriitsubspitcitriit
AT conesaana itfortunellamargaritaittranscriptionalreprogrammingtriggeredbyitxanthomonascitriitsubspitcitriit
AT dopazojoaquin itfortunellamargaritaittranscriptionalreprogrammingtriggeredbyitxanthomonascitriitsubspitcitriit
AT mooregloriaa itfortunellamargaritaittranscriptionalreprogrammingtriggeredbyitxanthomonascitriitsubspitcitriit
_version_ 1725649998447640576