The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.

3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni reversibly catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH. Structurally the substrate-binding loop of the residues, T188-K208, is unresolved, while binding with NAD(+) causes the appe...

Full description

Bibliographic Details
Main Authors: Chi-Ching Hwang, Yi-Hsun Chang, Hwei-Jen Lee, Tzu-Pin Wang, Yu-Mei Su, Hsin-Wei Chen, Po-Huang Liang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23717450/pdf/?tool=EBI
id doaj-5d21877c0bad475fb497996253eccd6d
record_format Article
spelling doaj-5d21877c0bad475fb497996253eccd6d2021-03-03T23:19:50ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0185e6359410.1371/journal.pone.0063594The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.Chi-Ching HwangYi-Hsun ChangHwei-Jen LeeTzu-Pin WangYu-Mei SuHsin-Wei ChenPo-Huang Liang3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni reversibly catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH. Structurally the substrate-binding loop of the residues, T188-K208, is unresolved, while binding with NAD(+) causes the appearance of T188-P191 in the binary complex. This study determines the functional roles of the flexible substrate-binding loop in conformational changes and enzyme catalysis. A stopped-flow study reveals that the rate-limiting step in the reaction is the release of the NADH. The mutation at P185 in the hinge region and T188 in the loop causes a significant increase in the Kd value for NADH by fluorescence titration. A kinetic study of the mutants of P185A, P185G, T188A and T188S shows an increase in k(cat), K(androsterone) and K(iNAD) and equal primary isotope effects of (D)V and (D) (V/K). Therefore, these mutants increase the dissociation of the nucleotide cofactor, thereby increasing the rate of release of the product and producing the rate-limiting step in the hydride transfer. Simulated molecular modeling gives results that are consistent with the conformational change in the substrate-binding loop after NAD(+) binding. These results indicate that P185, T188 and the flexible substrate-binding loop are involved in binding with the nucleotide cofactor and with androsterone and are also involved in catalysis.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23717450/pdf/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Chi-Ching Hwang
Yi-Hsun Chang
Hwei-Jen Lee
Tzu-Pin Wang
Yu-Mei Su
Hsin-Wei Chen
Po-Huang Liang
spellingShingle Chi-Ching Hwang
Yi-Hsun Chang
Hwei-Jen Lee
Tzu-Pin Wang
Yu-Mei Su
Hsin-Wei Chen
Po-Huang Liang
The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
PLoS ONE
author_facet Chi-Ching Hwang
Yi-Hsun Chang
Hwei-Jen Lee
Tzu-Pin Wang
Yu-Mei Su
Hsin-Wei Chen
Po-Huang Liang
author_sort Chi-Ching Hwang
title The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
title_short The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
title_full The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
title_fullStr The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
title_full_unstemmed The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni.
title_sort catalytic roles of p185 and t188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from comamonas testosteroni.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2013-01-01
description 3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni reversibly catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH. Structurally the substrate-binding loop of the residues, T188-K208, is unresolved, while binding with NAD(+) causes the appearance of T188-P191 in the binary complex. This study determines the functional roles of the flexible substrate-binding loop in conformational changes and enzyme catalysis. A stopped-flow study reveals that the rate-limiting step in the reaction is the release of the NADH. The mutation at P185 in the hinge region and T188 in the loop causes a significant increase in the Kd value for NADH by fluorescence titration. A kinetic study of the mutants of P185A, P185G, T188A and T188S shows an increase in k(cat), K(androsterone) and K(iNAD) and equal primary isotope effects of (D)V and (D) (V/K). Therefore, these mutants increase the dissociation of the nucleotide cofactor, thereby increasing the rate of release of the product and producing the rate-limiting step in the hydride transfer. Simulated molecular modeling gives results that are consistent with the conformational change in the substrate-binding loop after NAD(+) binding. These results indicate that P185, T188 and the flexible substrate-binding loop are involved in binding with the nucleotide cofactor and with androsterone and are also involved in catalysis.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23717450/pdf/?tool=EBI
work_keys_str_mv AT chichinghwang thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT yihsunchang thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT hweijenlee thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT tzupinwang thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT yumeisu thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT hsinweichen thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT pohuangliang thecatalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT chichinghwang catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT yihsunchang catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT hweijenlee catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT tzupinwang catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT yumeisu catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT hsinweichen catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
AT pohuangliang catalyticrolesofp185andt188andsubstratebindingloopflexibilityin3ahydroxysteroiddehydrogenasecarbonylreductasefromcomamonastestosteroni
_version_ 1714811646487035904