Detrital Zircon Provenance Analysis in the Central Asian Orogenic Belt of Central and Southeastern Mongolia—A Palaeotectonic Model for the Mongolian Collage

Our study is aimed at reconstructing the Palaeozoic–early Mesozoic plate tectonic development of the Central Asian Orogenic Belt in central and southeast Mongolia (Gobi). We use sandstone provenance signatures including laser ablation U-Pb ages of detrital zircons, their epsilon hafnium isotope sign...

Full description

Bibliographic Details
Main Authors: Wilfried Winkler, Denise Bussien, Munktsengel Baatar, Chimedtseren Anaad, Albrecht von Quadt
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/10/880
Description
Summary:Our study is aimed at reconstructing the Palaeozoic–early Mesozoic plate tectonic development of the Central Asian Orogenic Belt in central and southeast Mongolia (Gobi). We use sandstone provenance signatures including laser ablation U-Pb ages of detrital zircons, their epsilon hafnium isotope signatures, and detrital framework grain analyses. We adopt a well-established terran subdivision of central and southeastern Mongolia. However, according to their affinity and tectonic assemblage we group them into three larger units consisting of continental basement, rift-passive continental margin and arc elements, respectively. These are in today’s coordinates: (i) in the north the late Cambrian collage from which the later Mongol-Okhotsk and the Central Mongolia-Erguna mountain ranges resulted, (ii) in the south a heterogeneous block from which the South Mongolia-Xin’gan and Inner Mongolia-Xilin belts developed, and (iii) in between we still distinguish the intra-oceanic volcanic arc of the Gurvansayhan terrane. We present a model for paleotectonic development for the period from Cambrian to Jurassic, which also integrates findings from the Central Asian Orogenic Belt in China and Russia. This mobilistic model implies an interplay of rift and drift processes, ocean formation, oceanic subduction, basin inversion, collision and suture formation in space and time. The final assemblage of the Central Asian Orogenic Belt occurred in Early Jurassic.
ISSN:2075-163X