A Block Object Detection Method Based on Feature Fusion Networks for Autonomous Vehicles

Nowadays, automatic multi-objective detection remains a challenging problem for autonomous vehicle technologies. In the past decades, deep learning has been demonstrated successful for multi-objective detection, such as the Single Shot Multibox Detector (SSD) model. The current trend is to train the...

Full description

Bibliographic Details
Main Authors: Qiao Meng, Huansheng Song, Gang Li, Yu’an Zhang, Xiangqing Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2019/4042624
Description
Summary:Nowadays, automatic multi-objective detection remains a challenging problem for autonomous vehicle technologies. In the past decades, deep learning has been demonstrated successful for multi-objective detection, such as the Single Shot Multibox Detector (SSD) model. The current trend is to train the deep Convolutional Neural Networks (CNNs) with online autonomous vehicle datasets. However, network performance usually degrades when small objects are detected. Moreover, the existing autonomous vehicle datasets could not meet the need for domestic traffic environment. To improve the detection performance of small objects and ensure the validity of the dataset, we propose a new method. Specifically, the original images are divided into blocks as input to a VGG-16 network which add the feature map fusion after CNNs. Moreover, the image pyramid is built to project all the blocks detection results at the original objects size as much as possible. In addition to improving the detection method, a new autonomous driving vehicle dataset is created, in which the object categories and labelling criteria are defined, and a data augmentation method is proposed. The experimental results on the new datasets show that the performance of the proposed method is greatly improved, especially for small objects detection in large image. Moreover, the proposed method is adaptive to complex climatic conditions and contributes a lot for autonomous vehicle perception and planning.
ISSN:1076-2787
1099-0526