A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems
Context-aware video recommender systems (CAVRS) seek to improve recommendation performance by incorporating contextual features along with the conventional user-item ratings used by video recommender systems. In addition, the selection of influential and relevant contexts has a significant effect on...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/8/740 |
id |
doaj-5e583eca8fa34f3c94a9d7754af83c3f |
---|---|
record_format |
Article |
spelling |
doaj-5e583eca8fa34f3c94a9d7754af83c3f2020-11-25T01:17:11ZengMDPI AGMathematics2227-73902019-08-017874010.3390/math7080740math7080740A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender SystemsSyed Manzar Abbas0Khubaib Amjad Alam1Shahaboddin Shamshirband2Department of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad 44000, PakistanDepartment of Computer Science, National University of Computer and Emerging Sciences (FAST-NUCES), Islamabad 44000, PakistanDepartment for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet NamContext-aware video recommender systems (CAVRS) seek to improve recommendation performance by incorporating contextual features along with the conventional user-item ratings used by video recommender systems. In addition, the selection of influential and relevant contexts has a significant effect on the performance of CAVRS. However, it is not guaranteed that, under the same contextual scenario, all the items are evaluated by users for providing dense contextual ratings. This problem cause contextual sparsity in CAVRS because the influence of each contextual factor in traditional CAVRS assumes the weights of contexts homogeneously for each of the recommendations. Hence, the selection of influencing contexts with minimal conflicts is identified as a potential research challenge. This study aims at resolving the contextual sparsity problem to leverage user interactions at varying contexts with an item in CAVRS. This problem may be investigated by considering a formal approximation of contextual attributes. For the purpose of improving the accuracy of recommendation process, we have proposed a novel contextual information selection process using Soft-Rough Sets. The proposed model will select a minimal set of influencing contexts using a weights assign process by Soft-Rough sets. Moreover, the proposed algorithm has been extensively evaluated using “<i>LDOS-CoMoDa</i>” dataset, and the outcome signifies the accuracy of our approach in handling contextual sparsity by exploiting relevant contextual factors. The proposed model outperforms existing solutions by identifying relevant contexts efficiently based on certainty, strength, and relevancy for effective recommendations.https://www.mdpi.com/2227-7390/7/8/740context-aware recommender system (CARS)collaborative filteringrough setscontextual sparsitysoft-rough setsattribute reduction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Syed Manzar Abbas Khubaib Amjad Alam Shahaboddin Shamshirband |
spellingShingle |
Syed Manzar Abbas Khubaib Amjad Alam Shahaboddin Shamshirband A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems Mathematics context-aware recommender system (CARS) collaborative filtering rough sets contextual sparsity soft-rough sets attribute reduction |
author_facet |
Syed Manzar Abbas Khubaib Amjad Alam Shahaboddin Shamshirband |
author_sort |
Syed Manzar Abbas |
title |
A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems |
title_short |
A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems |
title_full |
A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems |
title_fullStr |
A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems |
title_full_unstemmed |
A Soft-Rough Set Based Approach for Handling Contextual Sparsity in Context-Aware Video Recommender Systems |
title_sort |
soft-rough set based approach for handling contextual sparsity in context-aware video recommender systems |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-08-01 |
description |
Context-aware video recommender systems (CAVRS) seek to improve recommendation performance by incorporating contextual features along with the conventional user-item ratings used by video recommender systems. In addition, the selection of influential and relevant contexts has a significant effect on the performance of CAVRS. However, it is not guaranteed that, under the same contextual scenario, all the items are evaluated by users for providing dense contextual ratings. This problem cause contextual sparsity in CAVRS because the influence of each contextual factor in traditional CAVRS assumes the weights of contexts homogeneously for each of the recommendations. Hence, the selection of influencing contexts with minimal conflicts is identified as a potential research challenge. This study aims at resolving the contextual sparsity problem to leverage user interactions at varying contexts with an item in CAVRS. This problem may be investigated by considering a formal approximation of contextual attributes. For the purpose of improving the accuracy of recommendation process, we have proposed a novel contextual information selection process using Soft-Rough Sets. The proposed model will select a minimal set of influencing contexts using a weights assign process by Soft-Rough sets. Moreover, the proposed algorithm has been extensively evaluated using “<i>LDOS-CoMoDa</i>” dataset, and the outcome signifies the accuracy of our approach in handling contextual sparsity by exploiting relevant contextual factors. The proposed model outperforms existing solutions by identifying relevant contexts efficiently based on certainty, strength, and relevancy for effective recommendations. |
topic |
context-aware recommender system (CARS) collaborative filtering rough sets contextual sparsity soft-rough sets attribute reduction |
url |
https://www.mdpi.com/2227-7390/7/8/740 |
work_keys_str_mv |
AT syedmanzarabbas asoftroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems AT khubaibamjadalam asoftroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems AT shahaboddinshamshirband asoftroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems AT syedmanzarabbas softroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems AT khubaibamjadalam softroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems AT shahaboddinshamshirband softroughsetbasedapproachforhandlingcontextualsparsityincontextawarevideorecommendersystems |
_version_ |
1725147647514247168 |