A Kernel Least Mean Square Algorithm Based on Randomized Feature Networks

To construct an online kernel adaptive filter in a non-stationary environment, we propose a randomized feature networks-based kernel least mean square (KLMS-RFN) algorithm. In contrast to the Gaussian kernel, which implicitly maps the input to an infinite dimensional space in theory, the randomized...

Full description

Bibliographic Details
Main Authors: Yuqi Liu, Chao Sun, Shouda Jiang
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/3/458
Description
Summary:To construct an online kernel adaptive filter in a non-stationary environment, we propose a randomized feature networks-based kernel least mean square (KLMS-RFN) algorithm. In contrast to the Gaussian kernel, which implicitly maps the input to an infinite dimensional space in theory, the randomized feature mapping transform inputs samples into a relatively low-dimensional feature space, where the transformed samples are approximately equivalent to those in the feature space using a shift-invariant kernel. The mean square convergence process of the proposed algorithm is investigated under the uniform convergence analysis method of a nonlinear adaptive filter. The computational complexity is also evaluated. In Lorenz time series prediction and nonstationary channel equalization scenarios, the simulation results demonstrate the effectiveness of the proposed algorithm.
ISSN:2076-3417