Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle

Applying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle model with variable-temperature heat reservoirs is established, the expressions of power (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semanti...

Full description

Bibliographic Details
Main Authors: Ruibo Wang, Lingen Chen, Yanlin Ge, Huijun Feng
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/15/7171
id doaj-5ec0c9014f7a4b33bc6f1059961f4fb3
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Ruibo Wang
Lingen Chen
Yanlin Ge
Huijun Feng
spellingShingle Ruibo Wang
Lingen Chen
Yanlin Ge
Huijun Feng
Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
Applied Sciences
finite-time thermodynamics
irreversible steady-flow Lenoir cycle
cycle power
thermal efficiency
heat conductance distribution
thermal capacity rate matching
author_facet Ruibo Wang
Lingen Chen
Yanlin Ge
Huijun Feng
author_sort Ruibo Wang
title Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
title_short Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
title_full Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
title_fullStr Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
title_full_unstemmed Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir Cycle
title_sort optimizing power and thermal efficiency of an irreversible variable-temperature heat reservoir lenoir cycle
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-08-01
description Applying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle model with variable-temperature heat reservoirs is established, the expressions of power (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula>) and efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>) are derived. By numerical calculations, the characteristic relationships among <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> and the heat conductance distribution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>) of the heat exchangers, as well as the thermal capacity rate matching (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>) between working fluid and heat source are studied. The results show that when the heat conductances of the hot- and cold-side heat exchangers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>) are constants, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mtext>-</mtext><mi>η</mi></mrow></semantics></math></inline-formula> is a certain “point”, with the increase of heat reservoir inlet temperature ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>, and the irreversible expansion efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> increase. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> can be optimized, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> versus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> characteristics are parabolic-like ones, there are optimal values of heat conductance distributions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) to make the cycle reach the maximum power and efficiency points (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>). As <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> increases, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mtext>-</mtext><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> shows a parabolic-like curve, that is, there is an optimal value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) to make the cycle reach double-maximum power point (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>); as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>L</mi></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> increase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> increase; with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> increases, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is unchanged.
topic finite-time thermodynamics
irreversible steady-flow Lenoir cycle
cycle power
thermal efficiency
heat conductance distribution
thermal capacity rate matching
url https://www.mdpi.com/2076-3417/11/15/7171
work_keys_str_mv AT ruibowang optimizingpowerandthermalefficiencyofanirreversiblevariabletemperatureheatreservoirlenoircycle
AT lingenchen optimizingpowerandthermalefficiencyofanirreversiblevariabletemperatureheatreservoirlenoircycle
AT yanlinge optimizingpowerandthermalefficiencyofanirreversiblevariabletemperatureheatreservoirlenoircycle
AT huijunfeng optimizingpowerandthermalefficiencyofanirreversiblevariabletemperatureheatreservoirlenoircycle
_version_ 1721218810578468864
spelling doaj-5ec0c9014f7a4b33bc6f1059961f4fb32021-08-06T15:19:59ZengMDPI AGApplied Sciences2076-34172021-08-01117171717110.3390/app11157171Optimizing Power and Thermal Efficiency of an Irreversible Variable-Temperature Heat Reservoir Lenoir CycleRuibo Wang0Lingen Chen1Yanlin Ge2Huijun Feng3Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaInstitute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, ChinaApplying finite-time thermodynamics theory, an irreversible steady flow Lenoir cycle model with variable-temperature heat reservoirs is established, the expressions of power (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula>) and efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>) are derived. By numerical calculations, the characteristic relationships among <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> and the heat conductance distribution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>) of the heat exchangers, as well as the thermal capacity rate matching (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>) between working fluid and heat source are studied. The results show that when the heat conductances of the hot- and cold-side heat exchangers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>) are constants, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mtext>-</mtext><mi>η</mi></mrow></semantics></math></inline-formula> is a certain “point”, with the increase of heat reservoir inlet temperature ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula>, and the irreversible expansion efficiency (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula>), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> increase. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> can be optimized, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>P</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> versus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mi>L</mi></msub></mrow></semantics></math></inline-formula> characteristics are parabolic-like ones, there are optimal values of heat conductance distributions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>P</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>u</mi><mrow><msub><mi>L</mi><mi>η</mi></msub><mo stretchy="false">(</mo><mi>o</mi><mi>p</mi><mi>t</mi><mo stretchy="false">)</mo></mrow></msub></mrow></semantics></math></inline-formula>) to make the cycle reach the maximum power and efficiency points (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>). As <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> increases, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mtext>-</mtext><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> shows a parabolic-like curve, that is, there is an optimal value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>) to make the cycle reach double-maximum power point (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula>); as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>C</mi><mi>L</mi></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>T</mi></msub></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><mi>e</mi></msub></mrow></semantics></math></inline-formula> increase, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> increase; with the increase in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><mrow><mi>max</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mi>max</mi></mrow></msub></mrow></semantics></math></inline-formula> increases, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo stretchy="false">(</mo><msub><mi>C</mi><mrow><mi>w</mi><mi>f</mi><mn>1</mn></mrow></msub><mo>/</mo><msub><mi>C</mi><mi>H</mi></msub><mo stretchy="false">)</mo></mrow><mrow><mi>o</mi><mi>p</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is unchanged.https://www.mdpi.com/2076-3417/11/15/7171finite-time thermodynamicsirreversible steady-flow Lenoir cyclecycle powerthermal efficiencyheat conductance distributionthermal capacity rate matching