Summary: | We introduce a new streamline derivative projection-based closure modeling strategy for the numerical stabilization of Proper Orthogonal Decomposition-Reduced Order Models (POD-ROM). As a first preliminary step, the proposed model is analyzed and tested for advection-dominated advection-diffusion-reaction equations. In this framework, the numerical analysis for the Finite Element (FE) discretization of the proposed new POD-ROM is presented, by mainly deriving the corresponding error estimates. Numerical tests for advection-dominated regime show the effciency of the proposed method, as well the increased accuracy over the standard POD-ROM that discovers its well-known limitations very soon in the numerical settings considered, i.e. for low diffusion coeffcients.
|