Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization

<p>The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (<span class="inline-formula"><i>N</i><sub>CCN</sub></span>) data are scar...

Full description

Bibliographic Details
Main Authors: Y. Shen, A. Virkkula, A. Ding, K. Luoma, H. Keskinen, P. P. Aalto, X. Chi, X. Qi, W. Nie, X. Huang, T. Petäjä, M. Kulmala, V.-M. Kerminen
Format: Article
Language:English
Published: Copernicus Publications 2019-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/15483/2019/acp-19-15483-2019.pdf
id doaj-5f3b1713ffee4d5e899243fd5582a811
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Y. Shen
Y. Shen
A. Virkkula
A. Virkkula
A. Virkkula
A. Ding
K. Luoma
H. Keskinen
H. Keskinen
P. P. Aalto
X. Chi
X. Qi
W. Nie
X. Huang
T. Petäjä
T. Petäjä
M. Kulmala
V.-M. Kerminen
spellingShingle Y. Shen
Y. Shen
A. Virkkula
A. Virkkula
A. Virkkula
A. Ding
K. Luoma
H. Keskinen
H. Keskinen
P. P. Aalto
X. Chi
X. Qi
W. Nie
X. Huang
T. Petäjä
T. Petäjä
M. Kulmala
V.-M. Kerminen
Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
Atmospheric Chemistry and Physics
author_facet Y. Shen
Y. Shen
A. Virkkula
A. Virkkula
A. Virkkula
A. Ding
K. Luoma
H. Keskinen
H. Keskinen
P. P. Aalto
X. Chi
X. Qi
W. Nie
X. Huang
T. Petäjä
T. Petäjä
M. Kulmala
V.-M. Kerminen
author_sort Y. Shen
title Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
title_short Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
title_full Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
title_fullStr Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
title_full_unstemmed Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
title_sort estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterization
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-12-01
description <p>The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (<span class="inline-formula"><i>N</i><sub>CCN</sub></span>) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating <span class="inline-formula"><i>N</i><sub>CCN</sub></span> from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between <span class="inline-formula"><i>N</i><sub>CCN</sub></span>, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (<span class="inline-formula"><i>σ</i><sub>sp</sub></span>) of PM<span class="inline-formula"><sub>10</sub></span> particles. The analysis first showed that the dependence of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> on supersaturation (SS) can be described by a logarithmic fit in the range SS&thinsp;<span class="inline-formula">&lt;1.1</span>&thinsp;%, without any theoretical reasoning. The relationship between <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs was parameterized as <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>N</mi><mi mathvariant="normal">CCN</mi></msub><mo>≈</mo><mo>(</mo><mo>(</mo><mn mathvariant="normal">286</mn><mo>±</mo><mn mathvariant="normal">46</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1db18230eee7b12e7ed258c4199f0c7d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-15483-2019-ie00001.svg" width="93pt" height="13pt" src="acp-19-15483-2019-ie00001.png"/></svg:svg></span></span>SAE ln(SS/(<span class="inline-formula">0.093±0.006</span>))(BSF <span class="inline-formula">−</span> BSF<span class="inline-formula"><sub>min</sub></span>) <span class="inline-formula">+</span> (<span class="inline-formula">5.2±3.3</span>))<span class="inline-formula"><i>σ</i><sub>sp</sub></span>, where BSF<span class="inline-formula"><sub>min</sub></span> is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS&thinsp;<span class="inline-formula">≈0.1</span>&thinsp;%), the average bias, defined as the ratio of the AOP-derived and measured <span class="inline-formula"><i>N</i><sub>CCN</sub></span>, varied from <span class="inline-formula">∼0.7</span> to <span class="inline-formula">∼1.9</span> at most sites except at a Himalayan site where the bias was <span class="inline-formula">&gt;4</span>. At SS&thinsp;<span class="inline-formula">&gt;0.4</span>&thinsp;% the average bias ranged from <span class="inline-formula">∼0.7</span> to <span class="inline-formula">∼1.3</span> at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, <span class="inline-formula">∼1.4</span>–1.9. In other words, at SS&thinsp;<span class="inline-formula">&gt;0.4</span>&thinsp;% <span class="inline-formula"><i>N</i><sub>CCN</sub></span> was estimated with an average uncertainty of approximately 30&thinsp;% by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured <span class="inline-formula"><i>N</i><sub>CCN</sub></span> varied from <span class="inline-formula">∼0.5</span> to <span class="inline-formula">∼0.8</span>. To study the physical explanation of the relationships between <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs, lognormal unimodal particle size distributions were generated and <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs were calculated. The simulation showed that the relationships of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs were similar to those of the observed ones.</p>
url https://www.atmos-chem-phys.net/19/15483/2019/acp-19-15483-2019.pdf
work_keys_str_mv AT yshen estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT yshen estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT avirkkula estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT avirkkula estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT avirkkula estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT ading estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT kluoma estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT hkeskinen estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT hkeskinen estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT ppaalto estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT xchi estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT xqi estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT wnie estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT xhuang estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT tpetaja estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT tpetaja estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT mkulmala estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
AT vmkerminen estimatingcloudconcentrationnucleinumberconcentrationsusingaerosolopticalpropertiesroleofparticlenumbersizedistributionandparameterization
_version_ 1724989742570799104
spelling doaj-5f3b1713ffee4d5e899243fd5582a8112020-11-25T01:53:41ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-12-0119154831550210.5194/acp-19-15483-2019Estimating cloud concentration nuclei number concentrations using aerosol optical properties: role of particle number size distribution and parameterizationY. Shen0Y. Shen1A. Virkkula2A. Virkkula3A. Virkkula4A. Ding5K. Luoma6H. Keskinen7H. Keskinen8P. P. Aalto9X. Chi10X. Qi11W. Nie12X. Huang13T. Petäjä14T. Petäjä15M. Kulmala16V.-M. Kerminen17Joint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandAtmospheric Composition Research, Finnish Meteorological Institute, 00101 Helsinki, FinlandJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandHyytiälä Forestry Field Station, Hyytiäläntie 124, Korkeakoski FI 35500, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaJoint International Research Laboratory of Atmospheric Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, ChinaInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, FinlandInstitute for Atmospheric and Earth System Research/Physics, Faculty of Science, 00014 University of Helsinki, Helsinki, Finland<p>The concentration of cloud condensation nuclei (CCN) is an essential parameter affecting aerosol–cloud interactions within warm clouds. Long-term CCN number concentration (<span class="inline-formula"><i>N</i><sub>CCN</sub></span>) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating <span class="inline-formula"><i>N</i><sub>CCN</sub></span> from AOP measurements. Such parameterizations have already been made, and in the present work a new parameterization is presented. The relationships between <span class="inline-formula"><i>N</i><sub>CCN</sub></span>, AOPs, and size distributions were investigated based on in situ measurement data from six stations in very different environments around the world. The relationships were used for deriving a parameterization that depends on the scattering Ångström exponent (SAE), backscatter fraction (BSF), and total scattering coefficient (<span class="inline-formula"><i>σ</i><sub>sp</sub></span>) of PM<span class="inline-formula"><sub>10</sub></span> particles. The analysis first showed that the dependence of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> on supersaturation (SS) can be described by a logarithmic fit in the range SS&thinsp;<span class="inline-formula">&lt;1.1</span>&thinsp;%, without any theoretical reasoning. The relationship between <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs was parameterized as <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>N</mi><mi mathvariant="normal">CCN</mi></msub><mo>≈</mo><mo>(</mo><mo>(</mo><mn mathvariant="normal">286</mn><mo>±</mo><mn mathvariant="normal">46</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="93pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="1db18230eee7b12e7ed258c4199f0c7d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-15483-2019-ie00001.svg" width="93pt" height="13pt" src="acp-19-15483-2019-ie00001.png"/></svg:svg></span></span>SAE ln(SS/(<span class="inline-formula">0.093±0.006</span>))(BSF <span class="inline-formula">−</span> BSF<span class="inline-formula"><sub>min</sub></span>) <span class="inline-formula">+</span> (<span class="inline-formula">5.2±3.3</span>))<span class="inline-formula"><i>σ</i><sub>sp</sub></span>, where BSF<span class="inline-formula"><sub>min</sub></span> is the minimum BSF, in practice the 1st percentile of BSF data at a site to be analyzed. At the lowest supersaturations of each site (SS&thinsp;<span class="inline-formula">≈0.1</span>&thinsp;%), the average bias, defined as the ratio of the AOP-derived and measured <span class="inline-formula"><i>N</i><sub>CCN</sub></span>, varied from <span class="inline-formula">∼0.7</span> to <span class="inline-formula">∼1.9</span> at most sites except at a Himalayan site where the bias was <span class="inline-formula">&gt;4</span>. At SS&thinsp;<span class="inline-formula">&gt;0.4</span>&thinsp;% the average bias ranged from <span class="inline-formula">∼0.7</span> to <span class="inline-formula">∼1.3</span> at most sites. For the marine-aerosol-dominated site Ascension Island the bias was higher, <span class="inline-formula">∼1.4</span>–1.9. In other words, at SS&thinsp;<span class="inline-formula">&gt;0.4</span>&thinsp;% <span class="inline-formula"><i>N</i><sub>CCN</sub></span> was estimated with an average uncertainty of approximately 30&thinsp;% by using nephelometer data. The biases were mainly due to the biases in the parameterization related to the scattering Ångström exponent (SAE). The squared correlation coefficients between the AOP-derived and measured <span class="inline-formula"><i>N</i><sub>CCN</sub></span> varied from <span class="inline-formula">∼0.5</span> to <span class="inline-formula">∼0.8</span>. To study the physical explanation of the relationships between <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs, lognormal unimodal particle size distributions were generated and <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs were calculated. The simulation showed that the relationships of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs are affected by the geometric mean diameter and width of the size distribution and the activation diameter. The relationships of <span class="inline-formula"><i>N</i><sub>CCN</sub></span> and AOPs were similar to those of the observed ones.</p>https://www.atmos-chem-phys.net/19/15483/2019/acp-19-15483-2019.pdf