Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet

We present a numerical study for the steady, coupled, hydrodynamic, heat and mass transfer of an incompressible micropolar fluid flowing over a nonlinear stretching sheet. The governing differential equations are partially decoupled using a similarly transformation and then solved by two numerical...

Full description

Bibliographic Details
Main Authors: R. Bhargava, S. Sharma, H. S. Takhar, O. A. Bég, P. Bhargava
Format: Article
Language:English
Published: Vilnius University Press 2007-01-01
Series:Nonlinear Analysis
Subjects:
Online Access:http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14721
id doaj-5f8b0746dd1f41cd99467d01f794b820
record_format Article
spelling doaj-5f8b0746dd1f41cd99467d01f794b8202020-11-24T21:48:01ZengVilnius University PressNonlinear Analysis1392-51132335-89632007-01-0112110.15388/NA.2007.12.1.14721Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching SheetR. Bhargava0S. Sharma1H. S. Takhar2O. A. Bég3P. Bhargava4Indian Institute of Technology, IndiaIndian Institute of Technology, IndiaManchester Metropolitan University, UKLeeds Metropolitan University, UKIndian Institute of Technology, India We present a numerical study for the steady, coupled, hydrodynamic, heat and mass transfer of an incompressible micropolar fluid flowing over a nonlinear stretching sheet. The governing differential equations are partially decoupled using a similarly transformation and then solved by two numerical techniques – the finite element method and the finite difference method. The dimensionless translational velocity, microrotation (angular velocity), temperature and mass distribution function are computed for the different thermophysical parameters controlling the flow regime, viz the nonlinear (stretching) parameter, b, Grashof number, G and Schmidt number, Sc. All results are shown graphically. Additionally skin friction and Nusselt number, which provide an estimate of the surface shear stress and the rate of cooling of the surface, respectively, are also computed. Excellent agreement is obtained between both numerical methods. The dimensionless translational velocity (f′) for both micropolar and Newtonian fluids is shown to decrease with an increase in nonlinear parameter b. Dimensionless microrotation (angular velocity), g, generally increases with a rise in nonlinear parameter b (in particular in the vicinity of the wall) and decreases with a rise in convective parameter, G. The effects of other parameters on the flow variables are also discussed. The flow regime has significant applications in polymer processing technology and metallurgy. http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14721micropolar fluidnonlinear stretching sheetmaterials processingboundary layersnumerical solutionsconvective heat and mass transfer
collection DOAJ
language English
format Article
sources DOAJ
author R. Bhargava
S. Sharma
H. S. Takhar
O. A. Bég
P. Bhargava
spellingShingle R. Bhargava
S. Sharma
H. S. Takhar
O. A. Bég
P. Bhargava
Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
Nonlinear Analysis
micropolar fluid
nonlinear stretching sheet
materials processing
boundary layers
numerical solutions
convective heat and mass transfer
author_facet R. Bhargava
S. Sharma
H. S. Takhar
O. A. Bég
P. Bhargava
author_sort R. Bhargava
title Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
title_short Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
title_full Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
title_fullStr Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
title_full_unstemmed Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet
title_sort numerical solutions for micropolar transport phenomena over a nonlinear stretching sheet
publisher Vilnius University Press
series Nonlinear Analysis
issn 1392-5113
2335-8963
publishDate 2007-01-01
description We present a numerical study for the steady, coupled, hydrodynamic, heat and mass transfer of an incompressible micropolar fluid flowing over a nonlinear stretching sheet. The governing differential equations are partially decoupled using a similarly transformation and then solved by two numerical techniques – the finite element method and the finite difference method. The dimensionless translational velocity, microrotation (angular velocity), temperature and mass distribution function are computed for the different thermophysical parameters controlling the flow regime, viz the nonlinear (stretching) parameter, b, Grashof number, G and Schmidt number, Sc. All results are shown graphically. Additionally skin friction and Nusselt number, which provide an estimate of the surface shear stress and the rate of cooling of the surface, respectively, are also computed. Excellent agreement is obtained between both numerical methods. The dimensionless translational velocity (f′) for both micropolar and Newtonian fluids is shown to decrease with an increase in nonlinear parameter b. Dimensionless microrotation (angular velocity), g, generally increases with a rise in nonlinear parameter b (in particular in the vicinity of the wall) and decreases with a rise in convective parameter, G. The effects of other parameters on the flow variables are also discussed. The flow regime has significant applications in polymer processing technology and metallurgy.
topic micropolar fluid
nonlinear stretching sheet
materials processing
boundary layers
numerical solutions
convective heat and mass transfer
url http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/14721
work_keys_str_mv AT rbhargava numericalsolutionsformicropolartransportphenomenaoveranonlinearstretchingsheet
AT ssharma numericalsolutionsformicropolartransportphenomenaoveranonlinearstretchingsheet
AT hstakhar numericalsolutionsformicropolartransportphenomenaoveranonlinearstretchingsheet
AT oabeg numericalsolutionsformicropolartransportphenomenaoveranonlinearstretchingsheet
AT pbhargava numericalsolutionsformicropolartransportphenomenaoveranonlinearstretchingsheet
_version_ 1725893910660644864