Investigation of thermal conditions of nanosatellite optoelectronic telescopic module for different modes of operation

The problem of studying thermal conditions of the optoelectronic telescopic module of a nanosatellite under the influence of operating conditions is considered. To maintain optimal thermal conditions of the telescopic lens, a thermal control system based on electric heaters was chosen. Based on the...

Full description

Bibliographic Details
Main Authors: S. V. Tsaplin, S. A. Bolychev
Format: Article
Language:English
Published: Samara National Research University 2019-07-01
Series:Вестник Самарского университета: Аэрокосмическая техника, технологии и машиностроение
Subjects:
Online Access:https://journals.ssau.ru/index.php/vestnik/article/view/6754
Description
Summary:The problem of studying thermal conditions of the optoelectronic telescopic module of a nanosatellite under the influence of operating conditions is considered. To maintain optimal thermal conditions of the telescopic lens, a thermal control system based on electric heaters was chosen. Based on the three-dimensional model, the thermal regime of the lens is calculated taking into account the real operating conditions of the nanosatellite in its orbital motion. As a result of the calculation by the finite element method, the dynamics of the temperature fields of the lens was obtained for different modes of operation of the nanosatellite: access to the established thermal conditions, earth terrain survey in normal and extended modes. It is shown that in different modes of operation the thermal control system maintains a given temperature range of optical elements with moderate energy consumption and provides lens efficiency during the entire time of operation of the optoelectronic telescopic module of the nanosatellite.
ISSN:2542-0453
2541-7533