Natural inflation and low energy supersymmetry

Natural (axionic) inflation provides a well-motivated and predictive scheme for the description of the early universe. It leads to sizeable primordial tensor modes and thus a high mass scale of the inflationary potential. Naïvely this seems to be at odds with low (TeV) scale supersymmetry, especiall...

Full description

Bibliographic Details
Main Authors: Rolf Kappl, Hans Peter Nilles, Martin Wolfgang Winkler
Format: Article
Language:English
Published: Elsevier 2015-06-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S0370269315002786
Description
Summary:Natural (axionic) inflation provides a well-motivated and predictive scheme for the description of the early universe. It leads to sizeable primordial tensor modes and thus a high mass scale of the inflationary potential. Naïvely this seems to be at odds with low (TeV) scale supersymmetry, especially when embedded in superstring theory. We show that low scale supersymmetry is compatible with natural (high scale) inflation. The mechanism requires the presence of two axions that are provided through the moduli of string theory.
ISSN:0370-2693