Heterotic backgrounds via generalised geometry: moment maps and moduli

Abstract We describe the geometry of generic heterotic backgrounds preserving minimal supersymmetry in four dimensions using the language of generalised geometry. They are characterised by an SU(3) × Spin(6 + n) structure within O(6, 6 + n) × ℝ+ generalised geometry. Supersymmetry of the background...

Full description

Bibliographic Details
Main Authors: Anthony Ashmore, Charles Strickland-Constable, David Tennyson, Daniel Waldram
Format: Article
Language:English
Published: SpringerOpen 2020-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP11(2020)071
Description
Summary:Abstract We describe the geometry of generic heterotic backgrounds preserving minimal supersymmetry in four dimensions using the language of generalised geometry. They are characterised by an SU(3) × Spin(6 + n) structure within O(6, 6 + n) × ℝ+ generalised geometry. Supersymmetry of the background is encoded in the existence of an involutive subbundle of the generalised tangent bundle and the vanishing of a moment map for the action of diffeomorphisms and gauge symmetries. We give both the superpotential and the Kähler potential for a generic background, showing that the latter defines a natural Hitchin functional for heterotic geometries. Intriguingly, this formulation suggests new connections to geometric invariant theory and an extended notion of stability. Finally we show that the analysis of infinitesimal deformations of these geometric structures naturally reproduces the known cohomologies that count the massless moduli of supersymmetric heterotic backgrounds.
ISSN:1029-8479