A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition

Subject-independent emotion recognition based on physiological signals has become a research hotspot. Previous research has proved that electrodermal activity (EDA) signals are an effective data resource for emotion recognition. Benefiting from their great representation ability, an increasing numbe...

Full description

Bibliographic Details
Main Authors: Dian Yu, Shouqian Sun
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/11/4/212
Description
Summary:Subject-independent emotion recognition based on physiological signals has become a research hotspot. Previous research has proved that electrodermal activity (EDA) signals are an effective data resource for emotion recognition. Benefiting from their great representation ability, an increasing number of deep neural networks have been applied for emotion recognition, and they can be classified as a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), or a combination of these (CNN+RNN). However, there has been no systematic research on the predictive power and configurations of different deep neural networks in this task. In this work, we systematically explore the configurations and performances of three adapted deep neural networks: ResNet, LSTM, and hybrid ResNet-LSTM. Our experiments use the subject-independent method to evaluate the three-class classification on the MAHNOB dataset. The results prove that the CNN model (ResNet) reaches a better accuracy and F1 score than the RNN model (LSTM) and the CNN+RNN model (hybrid ResNet-LSTM). Extensive comparisons also reveal that our three deep neural networks with EDA data outperform previous models with handcraft features on emotion recognition, which proves the great potential of the end-to-end DNN method.
ISSN:2078-2489