Landau-type inequalities and <inline-formula><graphic file="1029-242X-1999-749652-i1.gif"/></inline-formula>-bounded solutions of neutral delay systems
<p/> <p>In Section 1 relations between various forms of Landau inequalities <inline-formula><graphic file="1029-242X-1999-749652-i2.gif"/></inline-formula> and Halperin–Pitt inequalities <inline-formula><graphic file="1029-242X-1999-749...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1999-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/4/749652 |
Summary: | <p/> <p>In Section 1 relations between various forms of Landau inequalities <inline-formula><graphic file="1029-242X-1999-749652-i2.gif"/></inline-formula> and Halperin–Pitt inequalities <inline-formula><graphic file="1029-242X-1999-749652-i3.gif"/></inline-formula> are discussed, for arbitrary norms, intervals and Banach-space-valued <inline-formula><graphic file="1029-242X-1999-749652-i4.gif"/></inline-formula>. In Section 2 such inequalities are derived for weighted <inline-formula><graphic file="1029-242X-1999-749652-i5.gif"/></inline-formula>-norms, Stepanoff- and Orlicz-norms.</p> <p>With this, Esclangon–Landau theorems for solutions y of linear neutral delay difference- differential systems are obtained: If <inline-formula><graphic file="1029-242X-1999-749652-i6.gif"/></inline-formula> is bounded e.g. in a weighted <inline-formula><graphic file="1029-242X-1999-749652-i7.gif"/></inline-formula>- or Stepanoff-norm, then so are the <inline-formula><graphic file="1029-242X-1999-749652-i8.gif"/></inline-formula>. This holds also for some nonlinear functional differential equations.</p> |
---|---|
ISSN: | 1025-5834 1029-242X |