Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data

Efficient water management in agriculture requires a precise estimate of evapotranspiration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula&...

Full description

Bibliographic Details
Main Authors: Viviana Gavilán, Mario Lillo-Saavedra, Eduardo Holzapfel, Diego Rivera, Angel García-Pedrero
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/11/11/2236
id doaj-61bd95a1a8b74a4080f722d00d3c4324
record_format Article
spelling doaj-61bd95a1a8b74a4080f722d00d3c43242020-11-25T01:55:55ZengMDPI AGWater2073-44412019-10-011111223610.3390/w11112236w11112236Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series DataViviana Gavilán0Mario Lillo-Saavedra1Eduardo Holzapfel2Diego Rivera3Angel García-Pedrero4Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, ChileFacultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, ChileFacultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, ChileFacultad de Ingeniería Agrícola, Universidad de Concepción, Chillán 3812120, ChileSustainable Forest Management Research Institute. Universidad de Valladolid &amp; INIA, 42004 Soria, SpainEfficient water management in agriculture requires a precise estimate of evapotranspiration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>. In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula>) obtained from Landsat-8 (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mn>8</mn> </mrow> </semantics> </math> </inline-formula>) and Sentinel-2 (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>) sensors in order to obtain an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula> time series used to estimate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> through fit equations specific to each crop type during an agricultural season (December 2017&#8722;March 2018). Based on the obtained results it was concluded that it is possible to estimate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> using an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula> time series by integrating data from both sensors <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mn>8</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.https://www.mdpi.com/2073-4441/11/11/2236agricultural water managementevapotranspirationharmonization remote sensing data
collection DOAJ
language English
format Article
sources DOAJ
author Viviana Gavilán
Mario Lillo-Saavedra
Eduardo Holzapfel
Diego Rivera
Angel García-Pedrero
spellingShingle Viviana Gavilán
Mario Lillo-Saavedra
Eduardo Holzapfel
Diego Rivera
Angel García-Pedrero
Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
Water
agricultural water management
evapotranspiration
harmonization remote sensing data
author_facet Viviana Gavilán
Mario Lillo-Saavedra
Eduardo Holzapfel
Diego Rivera
Angel García-Pedrero
author_sort Viviana Gavilán
title Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
title_short Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
title_full Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
title_fullStr Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
title_full_unstemmed Seasonal Crop Water Balance Using Harmonized Landsat-8 and Sentinel-2 Time Series Data
title_sort seasonal crop water balance using harmonized landsat-8 and sentinel-2 time series data
publisher MDPI AG
series Water
issn 2073-4441
publishDate 2019-10-01
description Efficient water management in agriculture requires a precise estimate of evapotranspiration (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula>. In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula>) obtained from Landsat-8 (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mn>8</mn> </mrow> </semantics> </math> </inline-formula>) and Sentinel-2 (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>) sensors in order to obtain an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula> time series used to estimate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> through fit equations specific to each crop type during an agricultural season (December 2017&#8722;March 2018). Based on the obtained results it was concluded that it is possible to estimate <inline-formula> <math display="inline"> <semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics> </math> </inline-formula> using an <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics> </math> </inline-formula> time series by integrating data from both sensors <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mn>8</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.
topic agricultural water management
evapotranspiration
harmonization remote sensing data
url https://www.mdpi.com/2073-4441/11/11/2236
work_keys_str_mv AT vivianagavilan seasonalcropwaterbalanceusingharmonizedlandsat8andsentinel2timeseriesdata
AT mariolillosaavedra seasonalcropwaterbalanceusingharmonizedlandsat8andsentinel2timeseriesdata
AT eduardoholzapfel seasonalcropwaterbalanceusingharmonizedlandsat8andsentinel2timeseriesdata
AT diegorivera seasonalcropwaterbalanceusingharmonizedlandsat8andsentinel2timeseriesdata
AT angelgarciapedrero seasonalcropwaterbalanceusingharmonizedlandsat8andsentinel2timeseriesdata
_version_ 1724982549473656832