Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis.
Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4845997?pdf=render |
id |
doaj-6264ff9ba68a427ab55e0300590a2033 |
---|---|
record_format |
Article |
spelling |
doaj-6264ff9ba68a427ab55e0300590a20332020-11-25T01:42:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01114e015448310.1371/journal.pone.0154483Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis.Hao-Xin ZhouBing HanLi-Min HouTing-Ting AnGuang JiaZhuo-Xin ChengYong MaYi-Nan ZhouRui KongShuang-Jia WangYong-Wei WangXue-Jun SunShang-Ha PanBei SunAcute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP.http://europepmc.org/articles/PMC4845997?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hao-Xin Zhou Bing Han Li-Min Hou Ting-Ting An Guang Jia Zhuo-Xin Cheng Yong Ma Yi-Nan Zhou Rui Kong Shuang-Jia Wang Yong-Wei Wang Xue-Jun Sun Shang-Ha Pan Bei Sun |
spellingShingle |
Hao-Xin Zhou Bing Han Li-Min Hou Ting-Ting An Guang Jia Zhuo-Xin Cheng Yong Ma Yi-Nan Zhou Rui Kong Shuang-Jia Wang Yong-Wei Wang Xue-Jun Sun Shang-Ha Pan Bei Sun Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. PLoS ONE |
author_facet |
Hao-Xin Zhou Bing Han Li-Min Hou Ting-Ting An Guang Jia Zhuo-Xin Cheng Yong Ma Yi-Nan Zhou Rui Kong Shuang-Jia Wang Yong-Wei Wang Xue-Jun Sun Shang-Ha Pan Bei Sun |
author_sort |
Hao-Xin Zhou |
title |
Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. |
title_short |
Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. |
title_full |
Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. |
title_fullStr |
Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. |
title_full_unstemmed |
Protective Effects of Hydrogen Gas on Experimental Acute Pancreatitis. |
title_sort |
protective effects of hydrogen gas on experimental acute pancreatitis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Acute pancreatitis (AP) is an inflammatory disease mediated by damage to acinar cells and pancreatic inflammation. In patients with AP, subsequent systemic inflammatory responses and multiple organs dysfunction commonly occur. Interactions between cytokines and oxidative stress greatly contribute to the amplification of uncontrolled inflammatory responses. Molecular hydrogen (H2) is a potent free radical scavenger that not only ameliorates oxidative stress but also lowers cytokine levels. The aim of the present study was to investigate the protective effects of H2 gas on AP both in vitro and in vivo. For the in vitro assessment, AR42J cells were treated with cerulein and then incubated in H2-rich or normal medium for 24 h, and for the in vivo experiment, AP was induced through a retrograde infusion of 5% sodium taurocholate into the pancreatobiliary duct (0.1 mL/100 g body weight). Wistar rats were treated with inhaled air or 2% H2 gas and sacrificed 12 h following the induction of pancreatitis. Specimens were collected and processed to measure the amylase and lipase activity levels; the myeloperoxidase activity and production levels; the cytokine mRNA expression levels; the 8-hydroxydeoxyguanosine, malondialdehyde, and glutathione levels; and the cell survival rate. Histological examinations and immunohistochemical analyses were then conducted. The results revealed significant reductions in inflammation and oxidative stress both in vitro and in vivo. Furthermore, the beneficial effects of H2 gas were associated with reductions in AR42J cell and pancreatic tissue damage. In conclusion, our results suggest that H2 gas is capable of ameliorating damage to the pancreas and AR42J cells and that H2 exerts protective effects both in vitro and in vivo on subjects with AP. Thus, the results obtained indicate that this gas may represent a novel therapy agent in the management of AP. |
url |
http://europepmc.org/articles/PMC4845997?pdf=render |
work_keys_str_mv |
AT haoxinzhou protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT binghan protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT liminhou protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT tingtingan protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT guangjia protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT zhuoxincheng protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT yongma protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT yinanzhou protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT ruikong protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT shuangjiawang protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT yongweiwang protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT xuejunsun protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT shanghapan protectiveeffectsofhydrogengasonexperimentalacutepancreatitis AT beisun protectiveeffectsofhydrogengasonexperimentalacutepancreatitis |
_version_ |
1725036617183264768 |