Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis
Abstract Many animals lower their metabolic rate in response to low temperatures and scarcity of food in the winter in phenomena called hibernation or overwintering. Living at high altitude on the Tibetan Plateau where winters are very cold, the frog Nanorana parkeri, survives in one of the most hos...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2021-08-01
|
Series: | Frontiers in Zoology |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12983-021-00428-7 |
id |
doaj-6292704242164b74a767a8c320628ae2 |
---|---|
record_format |
Article |
spelling |
doaj-6292704242164b74a767a8c320628ae22021-08-29T11:30:36ZengBMCFrontiers in Zoology1742-99942021-08-0118111310.1186/s12983-021-00428-7Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysisYonggang Niu0Xuejing Zhang1Haiying Zhang2Tisen Xu3Lifeng Zhu4Kenneth B. Storey5Qiang Chen6School of Life Sciences, Dezhou UniversitySchool of Life Sciences, Dezhou UniversitySchool of Life Sciences, Dezhou UniversitySchool of Life Sciences, Dezhou UniversitySchool of Life Sciences, Nanjing Normal UniversityDepartment of Biology, Carleton UniversitySchool of Life Sciences, Lanzhou UniversityAbstract Many animals lower their metabolic rate in response to low temperatures and scarcity of food in the winter in phenomena called hibernation or overwintering. Living at high altitude on the Tibetan Plateau where winters are very cold, the frog Nanorana parkeri, survives in one of the most hostile environments on Earth but, to date, relatively little is known about the biochemical and physiological adjustments for overwintering by this species. The present study profiled changes in plasma metabolites of N. parkeri between winter and summer using UHPLC-QE-MS non-target metabolomics in order to explore metabolic adaptations that support winter survival. The analysis showed that, in total, 11 metabolites accumulated and 95 were reduced in overwintering frogs compared with summer-active animals. Metabolites that increased included some that may have antioxidant functions (canthaxanthin, galactinol), act as a metabolic inhibitor (mono-ethylhexylphthalate), or accumulate as a product of anaerobic metabolism (lactate). Most other metabolites in plasma showed reduced levels in winter and were generally involved in energy metabolism including 11 amino acids (proline, isoleucine, leucine, valine, phenylalanine, tyrosine, arginine, tryptophan, methionine, threonine and histidine) and 4 carbohydrates (glucose, citrate, succinate, and malate). Pathway analysis indicated that aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and nitrogen metabolism were potentially the most prominently altered pathways in overwintering frogs. Changes to these pathways are likely due to fasting and global metabolic depression in overwintering frogs. Concentrations of glucose and urea, commonly used as cryoprotectants by amphibians that winter on land, were significantly reduced during underwater hibernation in N. parkeri. In conclusion, winter survival of the high-altitude frog, N. parkeri was accompanied by substantial changes in metabolomic profiles and this study provides valuable information towards understanding the special adaptive mechanisms of N. parkeri to winter stresses.https://doi.org/10.1186/s12983-021-00428-7OverwinteringNanorana parkeriMetabolomicsPlasma |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yonggang Niu Xuejing Zhang Haiying Zhang Tisen Xu Lifeng Zhu Kenneth B. Storey Qiang Chen |
spellingShingle |
Yonggang Niu Xuejing Zhang Haiying Zhang Tisen Xu Lifeng Zhu Kenneth B. Storey Qiang Chen Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis Frontiers in Zoology Overwintering Nanorana parkeri Metabolomics Plasma |
author_facet |
Yonggang Niu Xuejing Zhang Haiying Zhang Tisen Xu Lifeng Zhu Kenneth B. Storey Qiang Chen |
author_sort |
Yonggang Niu |
title |
Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis |
title_short |
Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis |
title_full |
Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis |
title_fullStr |
Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis |
title_full_unstemmed |
Metabolic responses of plasma to extreme environments in overwintering Tibetan frogs Nanorana parkeri: a metabolome integrated analysis |
title_sort |
metabolic responses of plasma to extreme environments in overwintering tibetan frogs nanorana parkeri: a metabolome integrated analysis |
publisher |
BMC |
series |
Frontiers in Zoology |
issn |
1742-9994 |
publishDate |
2021-08-01 |
description |
Abstract Many animals lower their metabolic rate in response to low temperatures and scarcity of food in the winter in phenomena called hibernation or overwintering. Living at high altitude on the Tibetan Plateau where winters are very cold, the frog Nanorana parkeri, survives in one of the most hostile environments on Earth but, to date, relatively little is known about the biochemical and physiological adjustments for overwintering by this species. The present study profiled changes in plasma metabolites of N. parkeri between winter and summer using UHPLC-QE-MS non-target metabolomics in order to explore metabolic adaptations that support winter survival. The analysis showed that, in total, 11 metabolites accumulated and 95 were reduced in overwintering frogs compared with summer-active animals. Metabolites that increased included some that may have antioxidant functions (canthaxanthin, galactinol), act as a metabolic inhibitor (mono-ethylhexylphthalate), or accumulate as a product of anaerobic metabolism (lactate). Most other metabolites in plasma showed reduced levels in winter and were generally involved in energy metabolism including 11 amino acids (proline, isoleucine, leucine, valine, phenylalanine, tyrosine, arginine, tryptophan, methionine, threonine and histidine) and 4 carbohydrates (glucose, citrate, succinate, and malate). Pathway analysis indicated that aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, and nitrogen metabolism were potentially the most prominently altered pathways in overwintering frogs. Changes to these pathways are likely due to fasting and global metabolic depression in overwintering frogs. Concentrations of glucose and urea, commonly used as cryoprotectants by amphibians that winter on land, were significantly reduced during underwater hibernation in N. parkeri. In conclusion, winter survival of the high-altitude frog, N. parkeri was accompanied by substantial changes in metabolomic profiles and this study provides valuable information towards understanding the special adaptive mechanisms of N. parkeri to winter stresses. |
topic |
Overwintering Nanorana parkeri Metabolomics Plasma |
url |
https://doi.org/10.1186/s12983-021-00428-7 |
work_keys_str_mv |
AT yonggangniu metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT xuejingzhang metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT haiyingzhang metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT tisenxu metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT lifengzhu metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT kennethbstorey metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis AT qiangchen metabolicresponsesofplasmatoextremeenvironmentsinoverwinteringtibetanfrogsnanoranaparkeriametabolomeintegratedanalysis |
_version_ |
1721186703937372160 |