Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.

Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent senso...

Full description

Bibliographic Details
Main Authors: Yoon-Hee Cha, Shruthi Chakrapani
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4529307?pdf=render
id doaj-637e56eaaac34639878e11bda976111a
record_format Article
spelling doaj-637e56eaaac34639878e11bda976111a2020-11-24T22:03:59ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01108e013502110.1371/journal.pone.0135021Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.Yoon-Hee ChaShruthi ChakrapaniMal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood.We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls.MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a relationship with duration of illness. MdDS participants showed positive correlations between grey matter volume in pgACC and bilateral cerebellar lobules VIII/IX, which was not seen in controls.Individuals with MdDS show brain volume differences from healthy controls as well as duration of illness dependent volume changes in (a) visual-vestibular processing areas (IPL, SPL, V3, V5/MT), (b) default mode network structures (cerebellar IX, IPL, ACC), (c) salience network structures (ACC and IFG/AI) (d) somatosensory network structures (postcentral gyrus, MCC, anterior cerebellum, cerebellar lobule VIII), and (e) a structure within the central executive network (DLPFC). The identification of these associations may enhance future investigations into how exposure to oscillating environments can modulate brain function and affect motion perception as well cognitive and affective control.http://europepmc.org/articles/PMC4529307?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Yoon-Hee Cha
Shruthi Chakrapani
spellingShingle Yoon-Hee Cha
Shruthi Chakrapani
Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
PLoS ONE
author_facet Yoon-Hee Cha
Shruthi Chakrapani
author_sort Yoon-Hee Cha
title Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
title_short Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
title_full Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
title_fullStr Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
title_full_unstemmed Voxel Based Morphometry Alterations in Mal de Debarquement Syndrome.
title_sort voxel based morphometry alterations in mal de debarquement syndrome.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description Mal de debarquement syndrome (MdDS) is a disorder of chronic self-motion perception that occurs though entrainment to rhythmic background motion, such as from sea voyage, and involves the perception of low-frequency rocking that can last for months or years. The neural basis of this persistent sensory perception abnormality is not well understood.We investigated grey matter volume differences underlying persistent MdDS by performing voxel-based morphometry on whole brain and pre-specified ROIs in 28 individuals with MdDS and comparing them to 18 age, sex, and handedness matched controls.MdDS participants exhibited greater grey matter volume in the left inferior parietal lobule, right inferior occipital gyrus (area V3v), right temporal pole, bilateral cerebellar hemispheric lobules VIII/IX and left lobule VIIa/VIIb. Grey matter volumes were lower in bilateral inferior frontal, orbitofrontal, pregenual anterior cingulate cortex (pgACC) and left superior medial gyri (t = 3.0, p<0.005uncorr). In ROI analyses, there were no volume differences in the middle occipital gyrus (region of V5/MT) or parietal operculum 2 (region of the parietoinsular vestibular cortex). Illness duration was positively related to grey matter volume in bilateral inferior frontal gyrus/anterior insula (IFG/AI), right posterior insula, superior parietal lobule, left middle occipital gyrus (V5/MT), bilateral postcentral gyrus, anterior cerebellum, and left cerebellar hemisphere and vermian lobule IX. In contrast, illness duration was negatively related to volume in pgACC, posterior middle cingulate gyrus (MCC), left middle frontal gyrus (dorsolateral prefrontal cortex-DLPFC), and right cerebellar hemispheric lobule VIIIb (t = 3.0, p<0.005uncorr). The most significant differences were decreased volume in the pgACC and increased volume in the left IFG/AI with longer illness duration (qFDRcorr <0.05). Concurrent medication use did not correlate with these findings or have a relationship with duration of illness. MdDS participants showed positive correlations between grey matter volume in pgACC and bilateral cerebellar lobules VIII/IX, which was not seen in controls.Individuals with MdDS show brain volume differences from healthy controls as well as duration of illness dependent volume changes in (a) visual-vestibular processing areas (IPL, SPL, V3, V5/MT), (b) default mode network structures (cerebellar IX, IPL, ACC), (c) salience network structures (ACC and IFG/AI) (d) somatosensory network structures (postcentral gyrus, MCC, anterior cerebellum, cerebellar lobule VIII), and (e) a structure within the central executive network (DLPFC). The identification of these associations may enhance future investigations into how exposure to oscillating environments can modulate brain function and affect motion perception as well cognitive and affective control.
url http://europepmc.org/articles/PMC4529307?pdf=render
work_keys_str_mv AT yoonheecha voxelbasedmorphometryalterationsinmaldedebarquementsyndrome
AT shruthichakrapani voxelbasedmorphometryalterationsinmaldedebarquementsyndrome
_version_ 1725831242405904384