Bulge oligonucleotide as an inhibitory agent of bacterial topoisomerase I

Bacterial topoisomerase I (Btopo I) was defined as potential target for discovery of new antibacterial compounds. Various oligonucleotides containing bulge structure were designed and synthesised as inhibitors to Btopo I in this investigation. The results of this study demonstrated that the designed...

Full description

Bibliographic Details
Main Authors: Zhaoqi Yang, Tuoyu Jiang, Hanshi Zhong, Yu Kang
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:Journal of Enzyme Inhibition and Medicinal Chemistry
Subjects:
Online Access:http://dx.doi.org/10.1080/14756366.2017.1419218
Description
Summary:Bacterial topoisomerase I (Btopo I) was defined as potential target for discovery of new antibacterial compounds. Various oligonucleotides containing bulge structure were designed and synthesised as inhibitors to Btopo I in this investigation. The results of this study demonstrated that the designed oligonucleotides display high inhibitory efficiency on the activity of Btopo I and the inhibitory effect could be modulated by the amount of bulge DNA bases. The most efficient one among them showed an IC50 value of 63.1 nM in its inhibition on the activity of Btopo I. In addition, our studies confirmed that the designed oligonucleotide would induce irreversible damages to Btopo I and without any effects occur to eukaryotic topoisomerase I. It is our hope that the results provided in these studies could provide a novel way to inhibit Btopo I.
ISSN:1475-6366
1475-6374