Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood

<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissue...

Full description

Bibliographic Details
Main Authors: Lyahyai Jaber, Mediano Diego R, Ranera Beatriz, Sanz Arianne, Remacha Ana, Bolea Rosa, Zaragoza Pilar, Rodellar Clementina, Martín-Burriel Inmaculada
Format: Article
Language:English
Published: BMC 2012-09-01
Series:BMC Veterinary Research
Subjects:
Online Access:http://www.biomedcentral.com/1746-6148/8/169
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there <it>in vitro</it> properties.</p> <p>Results</p> <p>Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers <it>CD29</it>, <it>CD73</it> and <it>CD90</it>, but failed to express the haematopoietic marker <it>CD45</it> and expressed only low levels of <it>CD105</it>. The expression of <it>CD34</it> was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (<it>PRNP</it>), which was up-regulated during neurogenesis.</p> <p>Conclusions</p> <p>This study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal lineages and to transdifferentiate into neuron-like cells <it>in vitro</it><b>.</b> Therefore, oPB-MSCs could serve as a valuable tool for biomedical research in fields including orthopaedics or prion diseases.</p>
ISSN:1746-6148