A method for estimating the power of moments

Abstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the p...

Full description

Bibliographic Details
Main Authors: Shuhua Chang, Deli Li, Yongcheng Qi, Andrew Rosalsky
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1645-7
id doaj-6399a1638c724c269876ff99929424d5
record_format Article
spelling doaj-6399a1638c724c269876ff99929424d52020-11-24T23:08:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-03-012018111410.1186/s13660-018-1645-7A method for estimating the power of momentsShuhua Chang0Deli Li1Yongcheng Qi2Andrew Rosalsky3Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and EconomicsDepartment of Mathematical Sciences, Lakehead UniversityDepartment of Mathematics and Statistics, University of Minnesota DuluthDepartment of Statistics, University of FloridaAbstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the power of moments of the random variable X. Let X1,X2,…,Xn $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n drawn from F(⋅) $F(\cdot)$. In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: θˆn=lognlogmax1≤k≤n|Xk|, $$\hat{\theta}_{n} = \frac{\log n}{\log\max_{1 \leq k \leq n} \vert X_{k} \vert }, $$ where logx=ln(e∨x) $\log x = \ln(e \vee x)$, −∞<x<∞ $- \infty< x < \infty$. In particular, we show that θˆn→Pθif and only iflimx→∞xrP(|X|>x)=∞∀r>θ. $$\hat{\theta}_{n} \rightarrow_{\mathbb{P}} \theta\quad\mbox{if and only if}\quad\lim_{x \rightarrow\infty} x^{r} \mathbb{P}\bigl( \vert X \vert > x\bigr) = \infty\quad\forall r > \theta. $$ This means that, under very reasonable conditions on F(⋅) $F(\cdot)$, θˆn $\hat {\theta}_{n}$ is actually a consistent estimator of θ.http://link.springer.com/article/10.1186/s13660-018-1645-7Asymptotic theoremsConsistent estimatorPoint estimatorPower of moments
collection DOAJ
language English
format Article
sources DOAJ
author Shuhua Chang
Deli Li
Yongcheng Qi
Andrew Rosalsky
spellingShingle Shuhua Chang
Deli Li
Yongcheng Qi
Andrew Rosalsky
A method for estimating the power of moments
Journal of Inequalities and Applications
Asymptotic theorems
Consistent estimator
Point estimator
Power of moments
author_facet Shuhua Chang
Deli Li
Yongcheng Qi
Andrew Rosalsky
author_sort Shuhua Chang
title A method for estimating the power of moments
title_short A method for estimating the power of moments
title_full A method for estimating the power of moments
title_fullStr A method for estimating the power of moments
title_full_unstemmed A method for estimating the power of moments
title_sort method for estimating the power of moments
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2018-03-01
description Abstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the power of moments of the random variable X. Let X1,X2,…,Xn $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n drawn from F(⋅) $F(\cdot)$. In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: θˆn=lognlogmax1≤k≤n|Xk|, $$\hat{\theta}_{n} = \frac{\log n}{\log\max_{1 \leq k \leq n} \vert X_{k} \vert }, $$ where logx=ln(e∨x) $\log x = \ln(e \vee x)$, −∞<x<∞ $- \infty< x < \infty$. In particular, we show that θˆn→Pθif and only iflimx→∞xrP(|X|>x)=∞∀r>θ. $$\hat{\theta}_{n} \rightarrow_{\mathbb{P}} \theta\quad\mbox{if and only if}\quad\lim_{x \rightarrow\infty} x^{r} \mathbb{P}\bigl( \vert X \vert > x\bigr) = \infty\quad\forall r > \theta. $$ This means that, under very reasonable conditions on F(⋅) $F(\cdot)$, θˆn $\hat {\theta}_{n}$ is actually a consistent estimator of θ.
topic Asymptotic theorems
Consistent estimator
Point estimator
Power of moments
url http://link.springer.com/article/10.1186/s13660-018-1645-7
work_keys_str_mv AT shuhuachang amethodforestimatingthepowerofmoments
AT delili amethodforestimatingthepowerofmoments
AT yongchengqi amethodforestimatingthepowerofmoments
AT andrewrosalsky amethodforestimatingthepowerofmoments
AT shuhuachang methodforestimatingthepowerofmoments
AT delili methodforestimatingthepowerofmoments
AT yongchengqi methodforestimatingthepowerofmoments
AT andrewrosalsky methodforestimatingthepowerofmoments
_version_ 1725614385496326144