A method for estimating the power of moments
Abstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the p...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-03-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1645-7 |
id |
doaj-6399a1638c724c269876ff99929424d5 |
---|---|
record_format |
Article |
spelling |
doaj-6399a1638c724c269876ff99929424d52020-11-24T23:08:24ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-03-012018111410.1186/s13660-018-1645-7A method for estimating the power of momentsShuhua Chang0Deli Li1Yongcheng Qi2Andrew Rosalsky3Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and EconomicsDepartment of Mathematical Sciences, Lakehead UniversityDepartment of Mathematics and Statistics, University of Minnesota DuluthDepartment of Statistics, University of FloridaAbstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the power of moments of the random variable X. Let X1,X2,…,Xn $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n drawn from F(⋅) $F(\cdot)$. In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: θˆn=lognlogmax1≤k≤n|Xk|, $$\hat{\theta}_{n} = \frac{\log n}{\log\max_{1 \leq k \leq n} \vert X_{k} \vert }, $$ where logx=ln(e∨x) $\log x = \ln(e \vee x)$, −∞<x<∞ $- \infty< x < \infty$. In particular, we show that θˆn→Pθif and only iflimx→∞xrP(|X|>x)=∞∀r>θ. $$\hat{\theta}_{n} \rightarrow_{\mathbb{P}} \theta\quad\mbox{if and only if}\quad\lim_{x \rightarrow\infty} x^{r} \mathbb{P}\bigl( \vert X \vert > x\bigr) = \infty\quad\forall r > \theta. $$ This means that, under very reasonable conditions on F(⋅) $F(\cdot)$, θˆn $\hat {\theta}_{n}$ is actually a consistent estimator of θ.http://link.springer.com/article/10.1186/s13660-018-1645-7Asymptotic theoremsConsistent estimatorPoint estimatorPower of moments |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shuhua Chang Deli Li Yongcheng Qi Andrew Rosalsky |
spellingShingle |
Shuhua Chang Deli Li Yongcheng Qi Andrew Rosalsky A method for estimating the power of moments Journal of Inequalities and Applications Asymptotic theorems Consistent estimator Point estimator Power of moments |
author_facet |
Shuhua Chang Deli Li Yongcheng Qi Andrew Rosalsky |
author_sort |
Shuhua Chang |
title |
A method for estimating the power of moments |
title_short |
A method for estimating the power of moments |
title_full |
A method for estimating the power of moments |
title_fullStr |
A method for estimating the power of moments |
title_full_unstemmed |
A method for estimating the power of moments |
title_sort |
method for estimating the power of moments |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-03-01 |
description |
Abstract Let X be an observable random variable with unknown distribution function F(x)=P(X≤x) $F(x) = \mathbb{P}(X \leq x)$, −∞<x<∞ $- \infty< x < \infty$, and let θ=sup{r≥0:E|X|r<∞}. $$\theta= \sup\bigl\{ r \geq0: \mathbb{E} \vert X \vert ^{r} < \infty\bigr\} . $$ We call θ the power of moments of the random variable X. Let X1,X2,…,Xn $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n drawn from F(⋅) $F(\cdot)$. In this paper we propose the following simple point estimator of θ and investigate its asymptotic properties: θˆn=lognlogmax1≤k≤n|Xk|, $$\hat{\theta}_{n} = \frac{\log n}{\log\max_{1 \leq k \leq n} \vert X_{k} \vert }, $$ where logx=ln(e∨x) $\log x = \ln(e \vee x)$, −∞<x<∞ $- \infty< x < \infty$. In particular, we show that θˆn→Pθif and only iflimx→∞xrP(|X|>x)=∞∀r>θ. $$\hat{\theta}_{n} \rightarrow_{\mathbb{P}} \theta\quad\mbox{if and only if}\quad\lim_{x \rightarrow\infty} x^{r} \mathbb{P}\bigl( \vert X \vert > x\bigr) = \infty\quad\forall r > \theta. $$ This means that, under very reasonable conditions on F(⋅) $F(\cdot)$, θˆn $\hat {\theta}_{n}$ is actually a consistent estimator of θ. |
topic |
Asymptotic theorems Consistent estimator Point estimator Power of moments |
url |
http://link.springer.com/article/10.1186/s13660-018-1645-7 |
work_keys_str_mv |
AT shuhuachang amethodforestimatingthepowerofmoments AT delili amethodforestimatingthepowerofmoments AT yongchengqi amethodforestimatingthepowerofmoments AT andrewrosalsky amethodforestimatingthepowerofmoments AT shuhuachang methodforestimatingthepowerofmoments AT delili methodforestimatingthepowerofmoments AT yongchengqi methodforestimatingthepowerofmoments AT andrewrosalsky methodforestimatingthepowerofmoments |
_version_ |
1725614385496326144 |