Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems

In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display=&qu...

Full description

Bibliographic Details
Main Authors: Giro Candelario, Alicia Cordero, Juan R. Torregrosa
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/3/452
id doaj-63cb0eb4ccc24841888d035ec7cd00cf
record_format Article
spelling doaj-63cb0eb4ccc24841888d035ec7cd00cf2020-11-25T02:01:58ZengMDPI AGMathematics2227-73902020-03-018345210.3390/math8030452math8030452Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear ProblemsGiro Candelario0Alicia Cordero1Juan R. Torregrosa2Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo 10602, Dominican RepublicInstitute for Multidisciplinary Mathematics, Universitat Politècnica de Valenència, Camino de Vera s/n, 46022 València, SpainInstitute for Multidisciplinary Mathematics, Universitat Politècnica de Valenència, Camino de Vera s/n, 46022 València, SpainIn the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare it with the existing fractional Newton method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, we also introduce a multipoint fractional Traub-type method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of the first step of the class) and classical Traub&#8217;s scheme (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub&#8217;s methods do not converge and the proposed methods do, among other advantages.https://www.mdpi.com/2227-7390/8/3/452nonlinear equationsfractional derivativesmultistep methodsconvergencestability
collection DOAJ
language English
format Article
sources DOAJ
author Giro Candelario
Alicia Cordero
Juan R. Torregrosa
spellingShingle Giro Candelario
Alicia Cordero
Juan R. Torregrosa
Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
Mathematics
nonlinear equations
fractional derivatives
multistep methods
convergence
stability
author_facet Giro Candelario
Alicia Cordero
Juan R. Torregrosa
author_sort Giro Candelario
title Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_short Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_full Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_fullStr Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_full_unstemmed Multipoint Fractional Iterative Methods with (2<i>α</i> + 1)th-Order of Convergence for Solving Nonlinear Problems
title_sort multipoint fractional iterative methods with (2<i>α</i> + 1)th-order of convergence for solving nonlinear problems
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-03-01
description In the recent literature, some fractional one-point Newton-type methods have been proposed in order to find roots of nonlinear equations using fractional derivatives. In this paper, we introduce a new fractional Newton-type method with order of convergence <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare it with the existing fractional Newton method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, we also introduce a multipoint fractional Traub-type method with order <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>&#945;</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and compare its performance with that of its first step. Some numerical tests and analysis of the dependence on the initial estimations are made for each case, including a comparison with classical Newton (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of the first step of the class) and classical Traub&#8217;s scheme (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#945;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> of fractional proposed multipoint method). In this comparison, some cases are found where classical Newton and Traub&#8217;s methods do not converge and the proposed methods do, among other advantages.
topic nonlinear equations
fractional derivatives
multistep methods
convergence
stability
url https://www.mdpi.com/2227-7390/8/3/452
work_keys_str_mv AT girocandelario multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems
AT aliciacordero multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems
AT juanrtorregrosa multipointfractionaliterativemethodswith2iai1thorderofconvergenceforsolvingnonlinearproblems
_version_ 1724954683552825344