Pore structure and fractal characteristics of a tight gas sandstone: A case study of Sulige area in the Ordos Basin, China

To understand the pore structure and fractal characteristics of tight gas reservoirs, thin sections, nuclear magnetic resonance, rate-controlled mercury injection, microcomputed tomography scanning, and field emission scanning electron microscopy investigations under laboratory conditions were condu...

Full description

Bibliographic Details
Main Authors: Hao Wu, Youliang Ji, Ruie Liu, Chunlin Zhang, Sheng Chen
Format: Article
Language:English
Published: SAGE Publishing 2018-11-01
Series:Energy Exploration & Exploitation
Online Access:https://doi.org/10.1177/0144598718764750
Description
Summary:To understand the pore structure and fractal characteristics of tight gas reservoirs, thin sections, nuclear magnetic resonance, rate-controlled mercury injection, microcomputed tomography scanning, and field emission scanning electron microscopy investigations under laboratory conditions were conducted on a suite of core samples from the Middle Permian Shihezi Formation of Sulige area in the Ordos Basin, China. The investigated tight gas sandstones comprise three types of pores, i.e. residual intergranular pore, secondary dissolution pore, and micropore. The pore–throat size distribution is extremely wide and multiscale (10 nm–400 μm) co-existing in tight gas reservoirs. The submicron- and micron-scale pore–throats with radius above 0.05 μm, which are characterized by combining rate-controlled mercury injection with nuclear magnetic resonance, are considered to be the effective pores and throats that dominated the reservoirs flow capacity. Tight gas sandstones have stage fractal characteristics, and the intrusion pressure of approximately 1 MPa is regarded as an inflection point. Fractal dimension is negatively correlated with permeability, average throat radius and mainstream throat radius, positively correlated with heterogeneous coefficient, while there are no obvious relationships with porosity and average pore radius. Additionally, the percolation characteristics of tight gas reservoirs can be characterized by fractal structure. When the pore structure does not follow the fractal structure (i.e. intrusion pressure is lower than 1 MPa), the mercury intrusion saturation is dominated by pores; in contrast, the mercury intrusion saturation is almost solely dominated by throats. This research sheds light on the pore–throat size distribution of tight gas reservoirs by identifying the role of multiple techniques and the relationships between the pore structure parameters and percolation characteristics of tight gas reservoirs and fractal dimension.
ISSN:0144-5987
2048-4054