A pilot study on searching for peri-nuclear NeuN-positive cells

The aim of this study was to find out neuron (-like) cells in peripheral organs by cell markers in rats. Adult male Sprague-Dawley rats were anaesthetized. Their organs including brain, heart, lung, liver, kidney, stomach, duodenum, and ileum were harvested. The mRNA and protein in these organs were...

Full description

Bibliographic Details
Main Authors: Yun Yu, Meiyu Wu, Nan Zhang, Hua Yin, Bin Shu, Weigang Duan
Format: Article
Language:English
Published: PeerJ Inc. 2020-01-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/8254.pdf
Description
Summary:The aim of this study was to find out neuron (-like) cells in peripheral organs by cell markers in rats. Adult male Sprague-Dawley rats were anaesthetized. Their organs including brain, heart, lung, liver, kidney, stomach, duodenum, and ileum were harvested. The mRNA and protein in these organs were extracted. RNA sequencing (RNA-Seq) was carried out, and NeuN, a “specific” marker for neuronal soma, was assayed with Western blotting. The sections of the aforementioned organs were obtained after a routine fixation (4% methanal)-dehydration (ethanol)-embedding (paraffin) process. NeuN in the sections and seven non-neuronal cell lines was analyzed by immunofluorescence (IF) or immunohistochemistry (IHC). Neuronal markers, such as Eno2, NeuN (Rbfox3), choline acetyltransferase (Chat), as well as tyrosine hydroxylase (Th), and neuronal-glial markers, e.g., glial fibrillary acidic protein (Gfap), S100b, 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (Cnp), and other related markers, were positively expressed in all the organs at mRNA level. NeuN was further analyzed by Western blotting. The IF and IHC assays showed that NeuN-positive cells were distributed in all the peripheral tissues (mainly peri-nuclear NeuN-positive cells) though with different patterns from that in brain (nuclear NeuN-positive cells), and a NeuN-negative tissue could not be found. Especially, NeuN and Myl3 co-expressed in the cytoplasm of myocardial cells, suggesting that NeuN could possess other functions than neuronal differentiation. Also, the protein was positively expressed in seven non-neuronal cell lines. Our findings suggested that NeuN-positive cells exist widely, and without identification of its distribution pattern, the specificity of NeuN for neurons could be limited.
ISSN:2167-8359