Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct
Background: In humans, visualization of the thoracic duct by magnetic resonance imaging (MRI) has been attempted, and recent advances have enabled clinicians to visualize the thoracic duct configuration in a less invasive manner. Moreover, MRI does not require contrast media and it enables visualiza...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Tripoli University
2020-03-01
|
Series: | Open Veterinary Journal |
Subjects: | |
Online Access: | https://www.openveterinaryjournal.com/OVJ-2019-10-321%20K.%20Kutara%20et%20al.pdf |
id |
doaj-648538890383408f95541364ab16d061 |
---|---|
record_format |
Article |
spelling |
doaj-648538890383408f95541364ab16d0612021-10-02T12:35:07ZengTripoli UniversityOpen Veterinary Journal2218-60502218-60502020-03-011016873http://dx.doi.org/10.4314/ovj.v10i1.11Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic ductKenji Kutara0Teppei Kanda1Noritaka Maeta2Yohei Mochizuki3Fumiko Ono4Yoshiki Itoh5Taketoshi Asanuma6Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanFaculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, JapanBackground: In humans, visualization of the thoracic duct by magnetic resonance imaging (MRI) has been attempted, and recent advances have enabled clinicians to visualize the thoracic duct configuration in a less invasive manner. Moreover, MRI does not require contrast media and it enables visualization of morphological details of the thoracic structures. In veterinary practice, the thoracic duct has not been visualized three-dimensionally in MRI. Aim: This study aimed to assess the performance of our magnetic resonance thoracic ductography (MRTD) technique to visualize the thoracic duct and the surrounding 3D anatomical structures by combining MRTD and vascular contrast-enhanced thoracic computed tomography (CT) images in dogs. Methods: Five adult male beagle dogs (11.4-12.8 kg) were included in this study. Sagittal and transverse T2-weighted images were scanned in MRI. Scanning in MRTD used a single-shot fast spin echo sequence with a respiratory gate. CT was performed after the intravenous injection of contrast medium. All MRTD and CT images were merged using a workstation. Results: The thoracic ducts were identified in MRTD images of all dogs, and the surrounding anatomical structures were located with the aid of contrast-enhanced thoracic CT. In all dogs, the thoracic ducts coursed along the right-dorsal side of the aorta, cranially from the L2 level. Thereafter, these bent to the left side at the aortic arch and curved at the left external jugular vein angle. A comparison of the number of thoracic ducts at each vertebra between transverse T2WI and MRTD did not reveal any significant differences for all vertebrae. Conclusion: The results from our study suggest that MRTD using the single-shot fast spin echo sequence could be a useful tool for visualization of the thoracic duct. Furthermore, the image merged from MRTD and vascular-enhanced images provided detailed anatomical annotation of the thorax. The MRTD protocol described in this study is safe and easily adaptable, without the need for contrast medium injection into the lymph system. In addition, the images fused from MRTD and vascular contrast-enhanced CT image of the thorax could provide detailed anatomical annotations for preoperative planning.https://www.openveterinaryjournal.com/OVJ-2019-10-321%20K.%20Kutara%20et%20al.pdfcomputed tomographydogmagnetic resonance imagingthoracic ductthoracic ductography |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kenji Kutara Teppei Kanda Noritaka Maeta Yohei Mochizuki Fumiko Ono Yoshiki Itoh Taketoshi Asanuma |
spellingShingle |
Kenji Kutara Teppei Kanda Noritaka Maeta Yohei Mochizuki Fumiko Ono Yoshiki Itoh Taketoshi Asanuma Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct Open Veterinary Journal computed tomography dog magnetic resonance imaging thoracic duct thoracic ductography |
author_facet |
Kenji Kutara Teppei Kanda Noritaka Maeta Yohei Mochizuki Fumiko Ono Yoshiki Itoh Taketoshi Asanuma |
author_sort |
Kenji Kutara |
title |
Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
title_short |
Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
title_full |
Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
title_fullStr |
Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
title_full_unstemmed |
Combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
title_sort |
combining non-contrast enhanced magnetic resonance thoracic ductography with vascular contrast-enhanced computed tomography to identify the canine thoracic duct |
publisher |
Tripoli University |
series |
Open Veterinary Journal |
issn |
2218-6050 2218-6050 |
publishDate |
2020-03-01 |
description |
Background: In humans, visualization of the thoracic duct by magnetic resonance imaging (MRI) has been attempted, and recent advances have enabled clinicians to visualize the thoracic duct configuration in a less invasive manner. Moreover, MRI does not require contrast media and it enables visualization of morphological details of the thoracic structures. In veterinary practice, the thoracic duct has not been visualized three-dimensionally in MRI.
Aim: This study aimed to assess the performance of our magnetic resonance thoracic ductography (MRTD) technique to visualize the thoracic duct and the surrounding 3D anatomical structures by combining MRTD and vascular contrast-enhanced thoracic computed tomography (CT) images in dogs.
Methods: Five adult male beagle dogs (11.4-12.8 kg) were included in this study. Sagittal and transverse T2-weighted images were scanned in MRI. Scanning in MRTD used a single-shot fast spin echo sequence with a respiratory gate. CT was performed after the intravenous injection of contrast medium. All MRTD and CT images were merged using a workstation.
Results: The thoracic ducts were identified in MRTD images of all dogs, and the surrounding anatomical structures were located with the aid of contrast-enhanced thoracic CT. In all dogs, the thoracic ducts coursed along the right-dorsal side of the aorta, cranially from the L2 level. Thereafter, these bent to the left side at the aortic arch and curved at the left external jugular vein angle. A comparison of the number of thoracic ducts at each vertebra between transverse T2WI and MRTD did not reveal any significant differences for all vertebrae.
Conclusion: The results from our study suggest that MRTD using the single-shot fast spin echo sequence could be a useful tool for visualization of the thoracic duct. Furthermore, the image merged from MRTD and vascular-enhanced images provided detailed anatomical annotation of the thorax. The MRTD protocol described in this study is safe and easily adaptable, without the need for contrast medium injection into the lymph system. In addition, the images fused from MRTD and vascular contrast-enhanced CT image of the thorax could provide detailed anatomical annotations for preoperative planning. |
topic |
computed tomography dog magnetic resonance imaging thoracic duct thoracic ductography |
url |
https://www.openveterinaryjournal.com/OVJ-2019-10-321%20K.%20Kutara%20et%20al.pdf |
work_keys_str_mv |
AT kenjikutara combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT teppeikanda combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT noritakamaeta combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT yoheimochizuki combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT fumikoono combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT yoshikiitoh combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct AT taketoshiasanuma combiningnoncontrastenhancedmagneticresonancethoracicductographywithvascularcontrastenhancedcomputedtomographytoidentifythecaninethoracicduct |
_version_ |
1716855705827278848 |