A Specific Population of Reticulospinal Neurons Controls the Termination of Locomotion

Locomotion requires the proper sequencing of neural activity to start, maintain, and stop it. Recently, brainstem neurons were shown to specifically stop locomotion in mammals. However, the cellular properties of these neurons and their activity during locomotion are still unknown. Here, we took adv...

Full description

Bibliographic Details
Main Authors: Laurent Juvin, Swantje Grätsch, Emilie Trillaud-Doppia, Jean-François Gariépy, Ansgar Büschges, Réjean Dubuc
Format: Article
Language:English
Published: Elsevier 2016-06-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S221112471630612X
Description
Summary:Locomotion requires the proper sequencing of neural activity to start, maintain, and stop it. Recently, brainstem neurons were shown to specifically stop locomotion in mammals. However, the cellular properties of these neurons and their activity during locomotion are still unknown. Here, we took advantage of the lamprey model to characterize the activity of a cell population that we now show to be involved in stopping locomotion. We find that these neurons display a burst of spikes that coincides with the end of swimming activity. Their pharmacological activation ends ongoing swimming, whereas the inactivation of these neurons dramatically impairs the rapid termination of swimming. These neurons are henceforth referred to as stop cells, because they play a crucial role in the termination of locomotion. Our findings contribute to the fundamental understanding of motor control and provide important details about the cellular mechanisms involved in locomotor termination.
ISSN:2211-1247