Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve

This paper presents a planar and compact microwave resonator sensor to characterize materials. The geometry of the resonator is based on the Sierpinski fractal curve and has four poles in the frequency range from 0.5 GHz to 5.5 GHz. Any of the four poles can be used to measure samples with low permi...

Full description

Bibliographic Details
Main Authors: P. H. B. Cavalcanti Filho, J. A. I. Araujo, M. R. T. Oliveira, M. T. de Melo, M. S. Coutinho, L. M. da Silva, I. Llamas-Garro
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2020/8830596
id doaj-65aa856f5e604e11818f98e59b5ccfd2
record_format Article
spelling doaj-65aa856f5e604e11818f98e59b5ccfd22020-12-14T09:46:38ZengHindawi LimitedJournal of Sensors1687-725X1687-72682020-01-01202010.1155/2020/88305968830596Planar Sensor for Material Characterization Based on the Sierpinski Fractal CurveP. H. B. Cavalcanti Filho0J. A. I. Araujo1M. R. T. Oliveira2M. T. de Melo3M. S. Coutinho4L. M. da Silva5I. Llamas-Garro6Departamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilDepartamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilDepartamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilDepartamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilDepartamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilDepartamento de Eletronica e Sistemas, Universidade Federal de Pernambuco (UFPE), Recife, BrazilCentre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels, Barcelona, SpainThis paper presents a planar and compact microwave resonator sensor to characterize materials. The geometry of the resonator is based on the Sierpinski fractal curve and has four poles in the frequency range from 0.5 GHz to 5.5 GHz. Any of the four poles can be used to measure samples with low permittivity values, where the first pole is suitable for samples with high permittivity values. The sensitivity of the poles and return losses of the sensor are presented and obtained using a full-wave 3D simulator software. The device is manufactured and validated through a comparison between simulated and measured results.http://dx.doi.org/10.1155/2020/8830596
collection DOAJ
language English
format Article
sources DOAJ
author P. H. B. Cavalcanti Filho
J. A. I. Araujo
M. R. T. Oliveira
M. T. de Melo
M. S. Coutinho
L. M. da Silva
I. Llamas-Garro
spellingShingle P. H. B. Cavalcanti Filho
J. A. I. Araujo
M. R. T. Oliveira
M. T. de Melo
M. S. Coutinho
L. M. da Silva
I. Llamas-Garro
Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
Journal of Sensors
author_facet P. H. B. Cavalcanti Filho
J. A. I. Araujo
M. R. T. Oliveira
M. T. de Melo
M. S. Coutinho
L. M. da Silva
I. Llamas-Garro
author_sort P. H. B. Cavalcanti Filho
title Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
title_short Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
title_full Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
title_fullStr Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
title_full_unstemmed Planar Sensor for Material Characterization Based on the Sierpinski Fractal Curve
title_sort planar sensor for material characterization based on the sierpinski fractal curve
publisher Hindawi Limited
series Journal of Sensors
issn 1687-725X
1687-7268
publishDate 2020-01-01
description This paper presents a planar and compact microwave resonator sensor to characterize materials. The geometry of the resonator is based on the Sierpinski fractal curve and has four poles in the frequency range from 0.5 GHz to 5.5 GHz. Any of the four poles can be used to measure samples with low permittivity values, where the first pole is suitable for samples with high permittivity values. The sensitivity of the poles and return losses of the sensor are presented and obtained using a full-wave 3D simulator software. The device is manufactured and validated through a comparison between simulated and measured results.
url http://dx.doi.org/10.1155/2020/8830596
work_keys_str_mv AT phbcavalcantifilho planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT jaiaraujo planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT mrtoliveira planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT mtdemelo planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT mscoutinho planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT lmdasilva planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
AT illamasgarro planarsensorformaterialcharacterizationbasedonthesierpinskifractalcurve
_version_ 1714998257218748416