Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data
The maturity and affordability of light detection and ranging (LiDAR) sensors have made possible the quick acquisition of 3D point cloud data to monitor phenotypic traits of vegetation canopies. However, while the majority of studies focused on the retrieval of macro scale parameters of vegetation,...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/18/3751 |
id |
doaj-66bc9dae5fde4dce8b7fd161c0df195b |
---|---|
record_format |
Article |
spelling |
doaj-66bc9dae5fde4dce8b7fd161c0df195b2021-09-26T01:19:12ZengMDPI AGRemote Sensing2072-42922021-09-01133751375110.3390/rs13183751Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR DataBitam Ali0Feng Zhao1Zhenjiang Li2Qichao Zhao3Jiabei Gong4Lin Wang5Peng Tong6Yanhong Jiang7Wei Su8Yunfei Bao9Juan Li10School of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaSchool of Instrument Science and Opto-Electronics Engineering, Beihang University of Aeronautics and Astronautics, Beijing 100191, ChinaCollege of Land Science and Technology, China Agricultural University, Beijing 100083, ChinaBeijing Institute of Space Mechanics and Electricity, China Academy of Space Technology, Beijing 100094, ChinaAerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, ChinaThe maturity and affordability of light detection and ranging (LiDAR) sensors have made possible the quick acquisition of 3D point cloud data to monitor phenotypic traits of vegetation canopies. However, while the majority of studies focused on the retrieval of macro scale parameters of vegetation, there are few studies addressing the reconstruction of explicit 3D structures from terrestrial LiDAR data and the retrieval of fine scale parameters from such structures. A challenging problem that arises from the latter studies is the need for a large amount of data to represent the various components in the actual canopy, which can be time consuming and resource intensive for processing and for further applications. In this study, we present a pipeline to reconstruct the 3D maize structures composed of triangle primitives based on multi-view terrestrial LiDAR measurements. We then study the sensitivity of the details with which the canopy architecture was represented for the computation of leaf angle distribution (LAD), leaf area index (LAI), gap fraction, and directional reflectance factors (DRF). Based on point clouds of a maize field in three stages of growth, we reconstructed the reference structures, which have the maximum number of triangles. To get a compromise between the details of the structure and accuracy reserved for later applications, we carried out a simplified process to have multiple configurations of details based on the decimation rate and the Hausdorff distance. Results show that LAD is not highly sensitive to the details of the structure (or the number of triangles). However, LAI, gap fraction, and DRF are more sensitive, and require a relatively high number of triangles. A choice of 100−500 triangles per leaf while maintaining the overall shapes of the leaves and a low Hausdorff distance is suggested as a good compromise to represent the canopy and give an overall accuracy of 98% for the computation of the various parameters.https://www.mdpi.com/2072-4292/13/18/3751radiative transfercanopy parametersLiDARLADLAIDRF |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bitam Ali Feng Zhao Zhenjiang Li Qichao Zhao Jiabei Gong Lin Wang Peng Tong Yanhong Jiang Wei Su Yunfei Bao Juan Li |
spellingShingle |
Bitam Ali Feng Zhao Zhenjiang Li Qichao Zhao Jiabei Gong Lin Wang Peng Tong Yanhong Jiang Wei Su Yunfei Bao Juan Li Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data Remote Sensing radiative transfer canopy parameters LiDAR LAD LAI DRF |
author_facet |
Bitam Ali Feng Zhao Zhenjiang Li Qichao Zhao Jiabei Gong Lin Wang Peng Tong Yanhong Jiang Wei Su Yunfei Bao Juan Li |
author_sort |
Bitam Ali |
title |
Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data |
title_short |
Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data |
title_full |
Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data |
title_fullStr |
Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data |
title_full_unstemmed |
Sensitivity Analysis of Canopy Structural and Radiative Transfer Parameters to Reconstructed Maize Structures Based on Terrestrial LiDAR Data |
title_sort |
sensitivity analysis of canopy structural and radiative transfer parameters to reconstructed maize structures based on terrestrial lidar data |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2021-09-01 |
description |
The maturity and affordability of light detection and ranging (LiDAR) sensors have made possible the quick acquisition of 3D point cloud data to monitor phenotypic traits of vegetation canopies. However, while the majority of studies focused on the retrieval of macro scale parameters of vegetation, there are few studies addressing the reconstruction of explicit 3D structures from terrestrial LiDAR data and the retrieval of fine scale parameters from such structures. A challenging problem that arises from the latter studies is the need for a large amount of data to represent the various components in the actual canopy, which can be time consuming and resource intensive for processing and for further applications. In this study, we present a pipeline to reconstruct the 3D maize structures composed of triangle primitives based on multi-view terrestrial LiDAR measurements. We then study the sensitivity of the details with which the canopy architecture was represented for the computation of leaf angle distribution (LAD), leaf area index (LAI), gap fraction, and directional reflectance factors (DRF). Based on point clouds of a maize field in three stages of growth, we reconstructed the reference structures, which have the maximum number of triangles. To get a compromise between the details of the structure and accuracy reserved for later applications, we carried out a simplified process to have multiple configurations of details based on the decimation rate and the Hausdorff distance. Results show that LAD is not highly sensitive to the details of the structure (or the number of triangles). However, LAI, gap fraction, and DRF are more sensitive, and require a relatively high number of triangles. A choice of 100−500 triangles per leaf while maintaining the overall shapes of the leaves and a low Hausdorff distance is suggested as a good compromise to represent the canopy and give an overall accuracy of 98% for the computation of the various parameters. |
topic |
radiative transfer canopy parameters LiDAR LAD LAI DRF |
url |
https://www.mdpi.com/2072-4292/13/18/3751 |
work_keys_str_mv |
AT bitamali sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT fengzhao sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT zhenjiangli sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT qichaozhao sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT jiabeigong sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT linwang sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT pengtong sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT yanhongjiang sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT weisu sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT yunfeibao sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata AT juanli sensitivityanalysisofcanopystructuralandradiativetransferparameterstoreconstructedmaizestructuresbasedonterrestriallidardata |
_version_ |
1716869146948403200 |