The Impact of Migration on the Gut Metagenome of South Asian Canadians

South Asian (SA) Canadian immigrants have a higher risk of developing certain immune-mediated inflammatory diseases compared to non-migrant SAs. We sought to investigate the effect of migration on the gut metagenome and to identify microbiological associations between migration and conditions that m...

Full description

Bibliographic Details
Main Authors: Julia K. Copeland, Gary Chao, Shelley Vanderhout, Erica Acton, Pauline W. Wang, Eric I. Benchimol, Ahmed El-Sohemy, Ken Croitoru, Jennifer L. Gommerman, David S. Guttman, the GEMINI Research Team
Format: Article
Language:English
Published: Taylor & Francis Group 2021-01-01
Series:Gut Microbes
Subjects:
Online Access:http://dx.doi.org/10.1080/19490976.2021.1902705
Description
Summary:South Asian (SA) Canadian immigrants have a higher risk of developing certain immune-mediated inflammatory diseases compared to non-migrant SAs. We sought to investigate the effect of migration on the gut metagenome and to identify microbiological associations between migration and conditions that may influence the development of immune-mediated inflammatory diseases. Metagenomic analysis of 58 first-generation (GEN1) SA immigrants and 38 unrelated Canadian born children-of-immigrants (GEN2) determined that the time lived in Canada was associated with continued changes in gut microbial communities. Migration of GEN1 to Canada early in life results in a gut community with similarities to GEN2 SA Canadians and non-SA North Americans. Conversely, GEN1 immigrants who arrived recently to Canada exhibited pronounced differences from GEN2, while displaying microbial similarities to a non-migrating SA cohort. Multivariate analysis identified that community composition was primarily influenced by high abundance taxa. Prevotella copri dominated in GEN1 and non-migrant SAs. Clostridia and functionally related Bacteroidia spp. replaced P. copri dominance over generations in Canada. Mutually exclusive Dialister species occurred at differing relative abundances over time and generations in Canada. This shift in species composition is accompanied by a change in genes associated with carbohydrate utilization and short-chain fatty acid production. Total energy derived from carbohydrates compared to protein consumption was significantly higher for GEN1 recent immigrants, which may influence the functional requirements of the gut community. This study demonstrates the associations between migration and the gut microbiome, which may be further associated with the altered risk of immune-mediated inflammatory diseases observed for SA Canadians.
ISSN:1949-0976
1949-0984