A Double Adaptive Approach to Tackle Malicious Users in Cognitive Radio Networks

Cognitive radio (CR) is being considered as a vital technology to provide solution to spectrum scarcity in next generation network, by efficiently utilizing the vacant spectrum of the licensed users. Cooperative spectrum sensing in cognitive radio network has a promising performance compared to the...

Full description

Bibliographic Details
Main Authors: Muhammad Sajjad Khan, Muhammad Jibran, Insoo Koo, Su Min Kim, Junsu Kim
Format: Article
Language:English
Published: Hindawi-Wiley 2019-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2019/2350694
Description
Summary:Cognitive radio (CR) is being considered as a vital technology to provide solution to spectrum scarcity in next generation network, by efficiently utilizing the vacant spectrum of the licensed users. Cooperative spectrum sensing in cognitive radio network has a promising performance compared to the individual sensing. However, the existence of the malicious users’ attack highly degrades the performance of the cognitive radio networks by sending falsified data also known as spectrum sensing data falsification (SSDF) to the fusion center. In this paper, we propose a double adaptive thresholding technique in order to differentiate legitimate users from doubtful and malicious users. Prior to the double adaptive approach, the maximal ratio combining (MRC) scheme is utilized to assign weight to each user such that the legitimate users experience higher weights than the malicious users. Double adaptive threshold is applied to give a fair chance to the doubtful users to ensure their credibility. A doubtful user that fails the double adaptive threshold test is declared as a malicious user. The results of the legitimate users are combined at the fusion center by utilizing Dempster-Shafer (DS) evidence theory. Effectiveness of the proposed scheme is proved through simulations by comparing with the existing schemes.
ISSN:1530-8669
1530-8677