pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

Peptide-based biopolymers represent highly promising biocompatible materials with multiple applications, such as tailored drug delivery, tissue engineering and regeneration, and as stimuli-responsive materials. Herein, we report the pH- and concentration-dependent self-assembly and conformational tr...

Full description

Bibliographic Details
Main Authors: Goutam Ghosh, Gustavo Fernández
Format: Article
Language:English
Published: Beilstein-Institut 2020-08-01
Series:Beilstein Journal of Organic Chemistry
Subjects:
Online Access:https://doi.org/10.3762/bjoc.16.168
Description
Summary:Peptide-based biopolymers represent highly promising biocompatible materials with multiple applications, such as tailored drug delivery, tissue engineering and regeneration, and as stimuli-responsive materials. Herein, we report the pH- and concentration-dependent self-assembly and conformational transformation of the newly synthesized octapeptide PEP-1. At pH 7.4, PEP-1 forms β-sheet-rich secondary structures into fractal-like morphologies, as verified by circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, thioflavin T (ThT) fluorescence spectroscopy assay, and atomic force microscopy (AFM). Upon changing the pH value (using pH 5.5 and 13.0), PEP-1 forms different types of secondary structures and resulting morphologies due to electrostatic repulsion between charged amino acids. PEP-1 can also form helical or random-coil secondary structures at a relatively low concentration. The obtained pH-sensitive self-assembly behavior of the target octapeptide is expected to contribute to the development of novel drug nanocarrier assemblies.
ISSN:1860-5397