A 900 <i>μ</i>m<sup>2</sup> BiCMOS Temperature Sensor for Dynamic Thermal Management

The extreme miniaturization of electronic technologies has turned varying and unpredictable temperatures into a first-class concern for high performance processors which mitigate the problem employing dynamic thermal managements control systems. In order to monitor the thermal profile of the chip, t...

Full description

Bibliographic Details
Main Authors: Hernán Aparicio, Pablo Ituero
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/13/3725
Description
Summary:The extreme miniaturization of electronic technologies has turned varying and unpredictable temperatures into a first-class concern for high performance processors which mitigate the problem employing dynamic thermal managements control systems. In order to monitor the thermal profile of the chip, these systems require a collection of on-chip temperature sensors with strict demands in terms of area and power overhead. This paper introduces a sensor topology specially tailored for these requirements. Targeting the 40 nm CMOS technology node, the proposed sensor uses both bipolar and CMOS transistors, benefiting from the stable thermal characteristics of the former and the compactness and speed of the latter. The sensor has been fully characterized through extensive post-layout simulations for a temperature range of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <msup> <mspace width="0.166667em"></mspace> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>100</mn> <msup> <mspace width="0.166667em"></mspace> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics> </math> </inline-formula>, achieving a maximum error of ±0.9<inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mspace width="0.166667em"></mspace> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics> </math> </inline-formula>/ considering 3<inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> yield and a resolution of 0.5<inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mspace width="0.166667em"></mspace> <mo>∘</mo> </msup> <mi mathvariant="normal">C</mi> </mrow> </semantics> </math> </inline-formula>. The area—900 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>, energy per conversion—1.06 nJ, and sampling period—2 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>s, are very competitive compared to previous works in the literature.
ISSN:1424-8220