Blowup equations for 6d SCFTs. Part I

Abstract We propose novel functional equations for the BPS partition functions of 6d (1, 0) SCFTs, which can be regarded as an elliptic version of Göttsche-Nakajima-Yoshioka’s K-theoretic blowup equations. From the viewpoint of geometric engineering, these are the generalized blowup equations for re...

Full description

Bibliographic Details
Main Authors: Jie Gu, Babak Haghighat, Kaiwen Sun, Xin Wang
Format: Article
Language:English
Published: SpringerOpen 2019-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP03(2019)002
Description
Summary:Abstract We propose novel functional equations for the BPS partition functions of 6d (1, 0) SCFTs, which can be regarded as an elliptic version of Göttsche-Nakajima-Yoshioka’s K-theoretic blowup equations. From the viewpoint of geometric engineering, these are the generalized blowup equations for refined topological strings on certain local elliptic CalabiYau threefolds. We derive recursion formulas for elliptic genera of self-dual strings on the tensor branch from these functional equations and in this way obtain a universal approach for determining refined BPS invariants. As examples, we study in detail the minimal 6d SCFTs with SU(3) and SO(8) gauge symmetry. In companion papers, we will study the elliptic blowup equations for all other non-Higgsable clusters.
ISSN:1029-8479