Summary: | The interaction of CNS tumors with infiltrating lymphocytes plays an important role in their initiation and progression and might be related to therapeutic responses. Gene expression-based methods have been successfully used to characterize the tumor microenvironment. However, methylation data are now increasingly used for molecular diagnostics and there are currently only few methods to infer information about the microenvironment from this data type. Using an approach based on differential methylation and principal component analysis, we developed DIMEimmune (Differential Methylation Analysis for Immune Cell Estimation) to estimate CD4+ and CD8+ T cell abundance as well as tumor-infiltrating lymphocytes (TILs) scores from bulk methylation data. Well-established approaches based on gene expression data and immunohistochemistry-based lymphocyte counts were used as benchmarks. The comparison of DIMEimmune to the previously published MethylCIBERSORT and MeTIL algorithms showed an improved correlation with both gene expression-based and immunohistological results across different brain tumor types. Further, we applied our method to large datasets of glioma, medulloblastoma, atypical teratoid/rhabdoid tumors (ATRTs) and ependymoma. High-grade gliomas showed higher scores of tumor-infiltrating lymphocytes than lower-grade gliomas. There were overall only few tumor-infiltrating lymphocytes in medulloblastoma subgroups. ATRTs were highly infiltrated by lymphocytes, most prominently in the MYC subgroup. DIMEimmune-based estimates of TILs were a significant prognostic factor in the overall cohort of gliomas and medulloblastomas, but not within methylation-based diagnostic subgroups. To conclude, DIMEimmune allows for robust estimates of TIL abundance and might contribute to establishing them as a prognostic or predictive factor in future studies of CNS tumors.
|