Maintaining Connectivity of MANETs through Multiple Unmanned Aerial Vehicles

Recently, Unmanned Aerial Vehicles (UAVs) have emerged as relay platforms to maintain the connectivity of ground mobile ad hoc networks (MANETs). However, when deploying UAVs, existing methods have not consider one situation that there are already some UAVs deployed in the field. In this paper, we s...

Full description

Bibliographic Details
Main Authors: Ming Zhu, Fei Liu, Zhiping Cai, Ming Xu
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/952069
Description
Summary:Recently, Unmanned Aerial Vehicles (UAVs) have emerged as relay platforms to maintain the connectivity of ground mobile ad hoc networks (MANETs). However, when deploying UAVs, existing methods have not consider one situation that there are already some UAVs deployed in the field. In this paper, we study a problem jointing the motion control of existing UAVs and the deployment of new UAVs so that the number of new deployed UAVs to maintain the connectivity of ground MANETs can be minimized. We firstly formulate the problem as a Minimum Steiner Tree problem with Existing Mobile Steiner points under Edge Length Bound constraints (MST-EMSELB) and prove the NP completeness of this problem. Then we propose three Existing UAVs Aware (EUA) approximate algorithms for the MST-EMSELB problem: Deploy-Before-Movement (DBM), Move-Before-Deployment (MBD), and Deploy-Across-Movement (DAM) algorithms. Both DBM and MBD algorithm decouple the joint problem and solve the deployment and movement problem one after another, while DAM algorithm optimizes the deployment and motion control problem crosswise and solves these two problems simultaneously. Simulation results demonstrate that all EUA algorithms have better performance than non-EUA algorithm. The DAM algorithm has better performance in all scenarios than MBD and DBM ones. Compared with DBM algorithm, the DAM algorithm can reduce at most 70% of the new UAVs number.
ISSN:1024-123X
1563-5147