A Qualitative Tool Condition Monitoring Framework Using Convolution Neural Network and Transfer Learning

Tool condition monitoring is one of the classical problems of manufacturing that is yet to see a solution that can be implementable in machine shops around the world. In tool condition monitoring, we are mostly trying to define a tool change policy. This tool change policy would identify a tool that...

Full description

Bibliographic Details
Main Authors: Harshavardhan Mamledesai, Mario A. Soriano, Rafiq Ahmad
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
CNN
AI
Online Access:https://www.mdpi.com/2076-3417/10/20/7298
Description
Summary:Tool condition monitoring is one of the classical problems of manufacturing that is yet to see a solution that can be implementable in machine shops around the world. In tool condition monitoring, we are mostly trying to define a tool change policy. This tool change policy would identify a tool that produces a non-conforming part. When the non-conforming part producing tool is identified, it could be changed, and a proactive approach to machining quality that saves resources invested in non-conforming parts would be possible. The existing studies highlight three barriers that need to be addressed before a tool condition monitoring solution can be implemented to carry out tool change decision-making autonomously and independently in machine shops around the world. First, these systems are not flexible enough to include different quality requirements of the machine shops. The existing studies only consider one quality aspect (for example, surface finish), which is difficult to generalize across the different quality requirements like concentricity or burrs on edges commonly seen in machine shops. Second, the studies try to quantify the tool condition, while the question that matters is whether the tool produces a conforming or a non-conforming part. Third, the qualitative answer to whether the tool produces a conforming or a non-conforming part requires a large amount of data to train the predictive models. The proposed model addresses these three barriers using the concepts of computer vision, a convolution neural network (CNN), and transfer learning (TL) to teach the machines how a conforming component-producing tool looks and how a non-conforming component-producing tool looks.
ISSN:2076-3417