Effects of Filler Wires on the Microstructure and Mechanical Properties of 2195-T6 Al-Li Alloy Spray Formed by TIG Welding

The main purpose of this work was to investigate the microstructure and mechanical properties of spray-formed 2195-T6 Al-Li alloy welding joints produced by tungsten inert gas (TIG) with Al-Cu and Al-Si-Cu filler wires, so that they can be better used in space vehicle tanks. The porosity analysis in...

Full description

Bibliographic Details
Main Authors: Yuhui Zhang, Huan Li, Chuanguang Luo, Lijun Yang
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/21/3559
Description
Summary:The main purpose of this work was to investigate the microstructure and mechanical properties of spray-formed 2195-T6 Al-Li alloy welding joints produced by tungsten inert gas (TIG) with Al-Cu and Al-Si-Cu filler wires, so that they can be better used in space vehicle tanks. The porosity analysis indicates that the porosity area of the weld seam with the Al-Si-Cu filler wire is approximately 7.989 times larger than that of the Al-Cu filler wire. Furthermore, the microstructure and microhardness results indicate that the Al/Cu eutectic near the fusion line distributes more at the grain boundaries, while more dispersed Al<sub>2</sub>Cu phase is found inside the grain, which improves the strength of the joint when using Al-Cu filler wire. However, when using the Al-Si-Cu filler wire, more Si, Cu, and Ti elements are segregated at the grain boundaries, forming a brittle-hard network Al/Cu/Ti eutectic, which reduces the performance of the joint. Additionally, the tensile strength and elongation of the weld joint are about 68.6% and 89.9% of the base metal (BM) when using the Al-Cu filler wire, and can approach the level of friction stir welding (FSW). However, the tensile strength and elongation are only about 56.8% and 39.9%, respectively, of the BM in the weld joint when using the Al-Si-Cu filler wire. Lastly, the fractures both occur on the fusion line and the fracture morphology of the weld joint shows that it is a mixed fracture mode dominated by plastic fracture when using Al-Cu filler wire, while it is mainly a quasi-cleavage fracture mode when using Al-Si-Cu filler wire. Therefore, the joint strength when using Al-Si-Cu filler wire with high strength matching is not as good as that of Al-Cu filler wire with low strength matching.
ISSN:1996-1944