Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications

In this paper, we obtain multifractals (attractors) in the framework of Hausdorff <i>b</i>-metric spaces. Fractals and multifractals are defined to be the fixed points of associated fractal operators, which are known as attractors in the literature of fractals. We extend the results obta...

Full description

Bibliographic Details
Main Authors: Sudesh Kumari, Renu Chugh, Jinde Cao, Chuangxia Huang
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/10/967
id doaj-6b3ad8321f364b2995dda5f159a278c6
record_format Article
spelling doaj-6b3ad8321f364b2995dda5f159a278c62020-11-25T00:39:59ZengMDPI AGMathematics2227-73902019-10-0171096710.3390/math7100967math7100967Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with ApplicationsSudesh Kumari0Renu Chugh1Jinde Cao2Chuangxia Huang3Department of Mathematics, Government College for Girls Sector 14, Gurugram 122001, IndiaDepartment of Mathematics, Maharshi Dayanand University, Rohtak 124001, IndiaResearch Center for Complex Systems and Network Sciences, School of Mathematics, Southeast University, Nanjing 210096, ChinaSchool of Mathematics and Statistics, Changsha University of Science and Technology, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha 410114, ChinaIn this paper, we obtain multifractals (attractors) in the framework of Hausdorff <i>b</i>-metric spaces. Fractals and multifractals are defined to be the fixed points of associated fractal operators, which are known as attractors in the literature of fractals. We extend the results obtained by Chifu et al. (2014) and N.A. Secelean (2015) and generalize the results of Nazir et al. (2016) by using the assumptions imposed by Dung et al. (2017) to the case of ciric type generalized multi-iterated function system (CGMIFS) composed of ciric type generalized multivalued <i>G</i>-contractions defined on multifractal space <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi mathvariant="script">U</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in the framework of a Hausdorff <i>b</i>-metric space, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">U</mi> <mo>=</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>&#215;</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>&#215;</mo> <mo>⋯</mo> <mo>&#215;</mo> <msub> <mi>U</mi> <mi>N</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <i>N</i> being a finite natural number. As an application of our study, we derive collage theorem which can be used to construct general fractals and to solve inverse problem in Hausdorff <i>b</i>-metric spaces which are more general spaces than Hausdorff metric spaces.https://www.mdpi.com/2227-7390/7/10/967generalized multivalued <i>g</i>—contractiongeneralized multivalued iterated function systemshausdorff <i>b</i> metric spacefractal spacemultifractal spacefixed point
collection DOAJ
language English
format Article
sources DOAJ
author Sudesh Kumari
Renu Chugh
Jinde Cao
Chuangxia Huang
spellingShingle Sudesh Kumari
Renu Chugh
Jinde Cao
Chuangxia Huang
Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
Mathematics
generalized multivalued <i>g</i>—contraction
generalized multivalued iterated function systems
hausdorff <i>b</i> metric space
fractal space
multifractal space
fixed point
author_facet Sudesh Kumari
Renu Chugh
Jinde Cao
Chuangxia Huang
author_sort Sudesh Kumari
title Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
title_short Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
title_full Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
title_fullStr Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
title_full_unstemmed Multi Fractals of Generalized Multivalued Iterated Function Systems in <i>b</i>-Metric Spaces with Applications
title_sort multi fractals of generalized multivalued iterated function systems in <i>b</i>-metric spaces with applications
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-10-01
description In this paper, we obtain multifractals (attractors) in the framework of Hausdorff <i>b</i>-metric spaces. Fractals and multifractals are defined to be the fixed points of associated fractal operators, which are known as attractors in the literature of fractals. We extend the results obtained by Chifu et al. (2014) and N.A. Secelean (2015) and generalize the results of Nazir et al. (2016) by using the assumptions imposed by Dung et al. (2017) to the case of ciric type generalized multi-iterated function system (CGMIFS) composed of ciric type generalized multivalued <i>G</i>-contractions defined on multifractal space <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi mathvariant="script">U</mi> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> in the framework of a Hausdorff <i>b</i>-metric space, where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">U</mi> <mo>=</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>&#215;</mo> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>&#215;</mo> <mo>⋯</mo> <mo>&#215;</mo> <msub> <mi>U</mi> <mi>N</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <i>N</i> being a finite natural number. As an application of our study, we derive collage theorem which can be used to construct general fractals and to solve inverse problem in Hausdorff <i>b</i>-metric spaces which are more general spaces than Hausdorff metric spaces.
topic generalized multivalued <i>g</i>—contraction
generalized multivalued iterated function systems
hausdorff <i>b</i> metric space
fractal space
multifractal space
fixed point
url https://www.mdpi.com/2227-7390/7/10/967
work_keys_str_mv AT sudeshkumari multifractalsofgeneralizedmultivaluediteratedfunctionsystemsinibimetricspaceswithapplications
AT renuchugh multifractalsofgeneralizedmultivaluediteratedfunctionsystemsinibimetricspaceswithapplications
AT jindecao multifractalsofgeneralizedmultivaluediteratedfunctionsystemsinibimetricspaceswithapplications
AT chuangxiahuang multifractalsofgeneralizedmultivaluediteratedfunctionsystemsinibimetricspaceswithapplications
_version_ 1725292051520552960