Summary: | This study investigated the spatiotemporal variation of vegetation growth and the influence of climatic drivers from 1982 to 2011 across China using datasets from the Normalized Difference Vegetation Index (NDVI) and climatic drivers. Long term trends, significance and abrupt change points of interannual NDVI time series were analyzed. We applied both simple regression and multi-regression models to quantify the effects of climatic drivers on vegetation growth and compare their relative contributions. Results show that on average, the growing season NDVI significantly increased by 0.0007 year-1, with 76.5% of the research area showed increasing NDVI from 1982 to 2011. Seasonally, NDVI increased at high rates during the spring and autumn while changed slightly during the summer. At a national scale, the growing season NDVI was significantly and positively correlated to temperature and precipitation, with temperature being the dominant factor. At regional scales, the growing season NDVI was dominated by increasing temperature in most forest-covered areas in southern China and dominated by precipitation in most grassland in northern China. Within the past three decades, the increasing trend of national mean NDVI abruptly changed in 1994, slowing down from 0.0008 year-1 to 0.0003 year-1. To be regional specific, the growing season NDVI in forest covered southern China has accelerated together with temperature since mid 1990s, while parts of the grassland in northern China have undergone stalled NDVI trends corresponding to slowed temperature increment and dropped precipitation since around 2000. Typical region analysis suggested that apart from long term trends and abrupt change points of climatic drivers, the processes of NDVI variation were also affected by other external factors such as drought and afforestation. Further studies are needed to investigate the nonlinear responses of vegetation growth to climatic drivers and effects of non-climate factors on vegetation growth.
|