Synthesis, Crystal Structure and Anti-Fatigue Effects of Some Benzamide Derivatives

A series of benzamide derivatives such as 1-(1,3-benzodioxol-5-ylcarbonyl) piperidine (1-BCP) were synthesized by the reaction of substituted benzoic acids with piperidine, morpholine or pyrrolidine using a novel method. The crystals of these benzamide derivatives were obtained by recrystallization....

Full description

Bibliographic Details
Main Authors: Xianglong Wu, Wutu Fan, Yalei Pan, Yuankun Zhai, Yinbo Niu, Chenrui Li, Qibing Mei
Format: Article
Language:English
Published: MDPI AG 2014-01-01
Series:Molecules
Subjects:
Online Access:http://www.mdpi.com/1420-3049/19/1/1034
Description
Summary:A series of benzamide derivatives such as 1-(1,3-benzodioxol-5-ylcarbonyl) piperidine (1-BCP) were synthesized by the reaction of substituted benzoic acids with piperidine, morpholine or pyrrolidine using a novel method. The crystals of these benzamide derivatives were obtained by recrystallization. Structures of target and intermediate compounds were determined via FT-IR, 1H-NMR and elemental analysis and X-ray crystallography of select examples. The crystal structures of these compounds have potential applications to identify the binding site for allosteric modulators of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor. The anti-fatigue effects of the benzamide derivatives in weight-loaded forced swimming mice were investigated in a swimming endurance capacity test used as an indicator of fatigue. The swimming times to exhaustion were longer in the b3, d3, and e3 groups than in the caffeine group (p < 0.05). In conclusion, b3, d3 and e3 enhanced the forced swimming capacity of mice. The mechanism of the anti-fatigue effects will be studied in the future.
ISSN:1420-3049