Mesenteric Lymph Duct Drainage Attenuates Lung Inflammatory Injury and Inhibits Endothelial Cell Apoptosis in Septic Rats

The present study was to investigate the effect of mesenteric lymph duct drainage on lung inflammatory response, histological alteration, and endothelial cell apoptosis in septic rats. Animals were randomly assigned into four groups: control, sham surgery, sepsis, and sepsis plus mesenteric lymph dr...

Full description

Bibliographic Details
Main Authors: Yongjun Liu, Chuanxi Chen, Qing Sun, Huadong Sun, Ning Liu, Qier Liu, Jie Ma, Pingping Wang, Chunlin Hu, Jianfeng Wu, Bin Ouyang, Juan Chen, Minying Chen, Xiangdong Guan
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2020/3049302
Description
Summary:The present study was to investigate the effect of mesenteric lymph duct drainage on lung inflammatory response, histological alteration, and endothelial cell apoptosis in septic rats. Animals were randomly assigned into four groups: control, sham surgery, sepsis, and sepsis plus mesenteric lymph drainage. We used the colon ascendens stent peritonitis (CASP) procedure to induce the septic model in rats, and mesenteric lymph drainage was performed with a polyethylene (PE) catheter inserted into mesenteric lymphatic. The animals were sacrificed at the end of CASP in 6 h. The mRNA expression levels of inflammatory mediators were measured by qPCR, and the histologic damage were evaluated by the pathological score method. It was found that mesenteric lymph drainage significantly reduced the expression of TNF-α, IL-1β, and IL-6 mRNA in the lung. Pulmonary interstitial edema and infiltration of inflammatory cells were alleviated by mesenteric lymph drainage. Moreover, increased mRNA levels of TNF-α, IL-1β, IL-6 mRNA, and apoptotic rate were observed in PMVECs treated with septic lymph. These results indicate that mesenteric lymph duct drainage significantly attenuated lung inflammatory injury by decreasing the expression of pivotal inflammatory mediators and inhibiting endothelial apoptosis to preserve the pulmonary barrier function in septic rats.
ISSN:2314-6133
2314-6141