Segmental distribution and morphometric features of primary sensory neurons projecting to the tibial periosteum in the rat.

Previous reports have demonstrated very rich innervation pattern in the periosteum. Most of the periosteal fibers were found to be sensory in nature. The aim of this study was to identify the primary sensory neurons that innervate the tibial periosteum in the adult rat and to describe the morphometr...

Full description

Bibliographic Details
Main Authors: Tadeusz Cichocki, Jean-Pierre Timmermans, Dirk Adriaensen, Jan A Litwin, Mariusz Gajda
Format: Article
Language:English
Published: Via Medica 2004-07-01
Series:Folia Histochemica et Cytobiologica
Online Access:http://czasopisma.viamedica.pl/fhc/article/view/4656
Description
Summary:Previous reports have demonstrated very rich innervation pattern in the periosteum. Most of the periosteal fibers were found to be sensory in nature. The aim of this study was to identify the primary sensory neurons that innervate the tibial periosteum in the adult rat and to describe the morphometric features of their perikarya. To this end, an axonal fluorescent carbocyanine tracer, DiI, was injected into the periosteum on the medial surface of the tibia. The perikarya of the sensory fibers were traced back in the dorsal root ganglia (DRG) L1-L6 by means of fluorescent microscopy on cryosections. DiI-containing neurons were counted in each section and their segmental distribution was determined. Using PC-assisted image analysis system, the size and shape of the traced perikarya were analyzed. DiI-labeled sensory neurons innervating the periosteum of the tibia were located in the DRG ipsilateral to the injection site, with the highest distribution in L3 and L4 (57% and 23%, respectively). The majority of the traced neurons were of small size (area < 850 microm2), which is consistent with the size distribution of CGRP- and SP-containing cells, regarded as primary sensory neurons responsible for perception of pain and temperature. A small proportion of labeled cells had large perikarya and probably supplied corpuscular sense receptors observed in the periosteum. No differences were found in the shape distribution of neurons belonging to different size classes.
ISSN:0239-8508
1897-5631